Mostrar el registro sencillo del ítem

dc.contributor.editorEscalante H.J.
dc.contributor.editorMontes-y-Gomez M.
dc.contributor.editorSegura A.
dc.contributor.editorde Dios Murillo J.
dc.creatorCaicedo-Torres W.
dc.creatorPayares F.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211
dc.identifier.isbn9783319479545
dc.identifier.issn03029743
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8994
dc.description.abstractOccupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a4840
dc.titleA machine learning model for occupancy rates and demand forecasting in the hospitality industry
dcterms.bibliographicCitationhttp://www.rueckstiess.net/research/snippets/show/72d2363e, Accessed 04 May 2016
dcterms.bibliographicCitationAlbanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C., (2012) Mlpy: Machine Learning Python
dcterms.bibliographicCitationAndrew, W.P., Cranage, D.A., Lee, C.K., Forecasting hotel occupancy rates with time series models: An empirical analysis (1990) J. Hospitality Tourism Res, 14 (2), pp. 173-182. , http://jht.sagepub.com/content/14/2/173.abstract
dcterms.bibliographicCitationBochkanov, S., ALGLIB, , http://alglib.net, Accessed 26 Apr 2016
dcterms.bibliographicCitationBroomhead, D., Lowe, D., Multivariable functional interpolation and adaptive networks (1988) Complex Syst, 2, pp. 321-355
dcterms.bibliographicCitationCortes, C., Vapnik, V., Support-vector networks. (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018
dcterms.bibliographicCitationEl-Gayar, N., Hendawi, A., Zakhary, A., El-Shishiny, H., A proposed decision support model for hotel room revenue management. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8 (1), pp. 23-28
dcterms.bibliographicCitationGilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , Wiley, Hoboken
dcterms.bibliographicCitationHoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://dx.doi.org/10.2307/1271436
dcterms.bibliographicCitationLaw, R., Au, N., A neural network model to forecast Japanese demand for travel to Hong Kong (1999) Tourism Manag, 20 (1), pp. 89-97
dcterms.bibliographicCitationLee, A.O., (1990) Airline Reservations Forecasting: Probabilistic and Statistical Models of the Booking Process., , Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA
dcterms.bibliographicCitationMurphy, K.P., (2012) Machine Learning: A Probabilistic Perspective, , The MIT Press, Cambridge
dcterms.bibliographicCitationPhumchusri, N., Mongkolku, P., Hotel room demand forecasting via observed reservation information (2012) Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference, pp. 1978-1985. , Kachitvichyanukul, V., Luong, H., Pitakaso, R. (eds.)
dcterms.bibliographicCitationRajopadhye, M., Ghalia, M.B., Wang, P.P., Baker, T., Eister, C.V., Forecasting uncertain hotel room demand. (2001) Inf. Sci., 132 (1-4), pp. 1-11. , http://dx.doi.org/10.1016/S0020-0255(00)00082-7
dcterms.bibliographicCitationRumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, Cambridge
dcterms.bibliographicCitationWeatherford, L.R., Kimes, S.E., A comparison of forecasting methods for hotel revenue management (2003) Int. J. Forecast, 19 (3), pp. 401-415
dcterms.bibliographicCitationZakhary, A., El Gayar, N., Atiya, A.F., A comparative study of the pickup method and its variations using a simulated hotel reservation data. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8, pp. 15-21
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-47955-2_17
dc.subject.keywordsForecasting
dc.subject.keywordsHotel occupancy. Demand
dc.subject.keywordsKernel Ridge Regression
dc.subject.keywordsMachine learning
dc.subject.keywordsNeural Networks
dc.subject.keywordsRidge regression
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsCosts
dc.subject.keywordsDecision making
dc.subject.keywordsEconomics
dc.subject.keywordsHotels
dc.subject.keywordsLearning systems
dc.subject.keywordsNeural networks
dc.subject.keywordsRegression analysis
dc.subject.keywordsDecision making process
dc.subject.keywordsFinancial performance
dc.subject.keywordsKernel ridge regressions
dc.subject.keywordsMachine learning models
dc.subject.keywordsMachine learning techniques
dc.subject.keywordsMean absolute percentage error
dc.subject.keywordsRidge regression
dc.subject.keywordsSpecialized software
dc.subject.keywordsForecasting
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate23 November 2016 through 25 November 2016
dc.type.spaConferencia
dc.identifier.orcid55782426500
dc.identifier.orcid57191841375


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.