Mostrar el registro sencillo del ítem

dc.creatorCasañola-Martín G.M.
dc.creatorLe-Thi-Thu H.
dc.creatorPérez-Giménez F.
dc.creatorMarrero-Ponce Y.
dc.creatorMerino-Sanjuán M.
dc.creatorAbad C.
dc.creatorGonzález-Díaz H.
dc.date.accessioned2020-03-26T16:32:43Z
dc.date.available2020-03-26T16:32:43Z
dc.date.issued2016
dc.identifier.citationCurrent Protein and Peptide Science; Vol. 17, Núm. 3; pp. 220-227
dc.identifier.issn13892037
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8989
dc.description.abstractThe ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. © 2016 Bentham Science Publishers.eng
dc.description.sponsorshipMinisterio de Economía y Competitividad: CTQ2013-41229-P
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBentham Science Publishers B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84961704457&partnerID=40&md5=7b0b58b4cfd95174bb7c8a0deac6d6ba
dc.titleMulti-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins
dcterms.bibliographicCitationTu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.G., Wang, C.Y., The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis (2012) Int. J. Clin. Exp. Pathol., 5 (8), pp. 726-738
dcterms.bibliographicCitationDriscoll, J.J., Dechowdhury, R., Therapeutically targeting the SUMOylation, ubiquitination and proteasome pathways as a novel anticancer strategy (2010) Targ. Oncol., 5 (4), pp. 281-289
dcterms.bibliographicCitationStein, M.L., Groll, M., Applied techniques for mining natural proteasome inhibitors. BBA-Mol (2014) Cell. Res., 1843 (1), pp. 26-38
dcterms.bibliographicCitationAminake, M.N., Arndt, H.D., Pradel, G., The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention (2012) Int. J. Parasitol. Drugs Drug Resist., 2, pp. 1-10
dcterms.bibliographicCitationCasañola-Martin, G.M., Le-Thi-Thu, H., Marrero-Ponce, Y., Castillo- Garit, J.A., Torrens, F., Perez-Gimenez, F., Abad, C., Analysis of Proteasome Inhibition Prediction Using Atom-Based Quadratic Indices Enhanced by Machine Learning Classification Techniques (2014) Lett. Drug Des. Discov., 11 (6), pp. 705-711
dcterms.bibliographicCitationGaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., Overington, J.P., ChEMBL: A large-scale bioactivity database for drug discovery (2012) Nucleic Acids Res., 40 (Database issue), pp. D1100-1107
dcterms.bibliographicCitationHeikamp, K., Bajorath, J., Large-scale similarity search profiling of ChEMBL compound data sets (2011) J. Chem. Inf. Model, 51 (8), pp. 1831-1839
dcterms.bibliographicCitationMok, N.Y., Brenk, R., Mining the ChEMBL database: An efficient chemoinformatics workflow for assembling an ion channel-focused screening library (2011) J. Chem. Inf. Model, 51 (10), pp. 2449-2454
dcterms.bibliographicCitationHu, Y., Bajorath, J., Molecular scaffolds with high propensity to form multi-target activity cliffs (2010) J. Chem. Inf. Model, 50 (4), pp. 500-510
dcterms.bibliographicCitationErhan, D., L'heureux, P.J., Yue, S.Y., Bengio, Y., Collaborative filtering on a family of biological targets (2006) J. Chem. Inf. Model, 46 (2), pp. 626-635
dcterms.bibliographicCitationNamasivayam, V., Hu, Y., Balfer, J., Bajorath, J., Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using emerging chemical patterns (2013) J. Chem. Inf. Model, 53 (6), pp. 1272-1281
dcterms.bibliographicCitationYildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M., Drug-target network. Nat (2007) Biotechnol., 25 (10), pp. 1119-1126
dcterms.bibliographicCitationTenorio-Borroto, E., Garcia-Mera, X., Penuelas-Rivas, C.G., Vasquez-Chagoyan, J.C., Prado-Prado, F.J., Castanedo, N., Gonzalez- Diaz, H., Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity (2013) Curr. Top. Med. Chem., 13 (14), pp. 1636-1649
dcterms.bibliographicCitationBox, G.E.P., Jenkins, G.M., Time series analysis (1970) Holden-Day, p. 553
dcterms.bibliographicCitationSpeck-Planche, A., Kleandrova, V.V., Cordeiro, M.N., Chemoinformatics for rational discovery of safe antibacterial drugs: Simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals (2013) Bioorg. Med. Chem, 21 (10), pp. 2727-2732
dcterms.bibliographicCitationSpeck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Chemoinformatics in multi-target drug discovery for anti-cancer therapy: In silico design of potent and versatile anti-brain tumor agents (2012) Anticancer Agents Med.Chem., 12 (6), pp. 678-685
dcterms.bibliographicCitationSpeck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Chemoinformatics in anti-cancer chemotherapy: Multi-target QSAR model for the in silico discovery of anti-breast cancer agents (2012) Eur. J. Pharm. Sci., 47 (1), pp. 273-279
dcterms.bibliographicCitationMarrero-Ponce, Y., Valdés-Martini, J.R., García Jacas, C.R., (2012) TOMOCOMD- CARDD. Qubils Software Qubils-Mas. Version 1.0, , CAMD-BIR Unit, Universidad Central “Marta Abreu” de Las Villas
dcterms.bibliographicCitationMarrero-Ponce, Y., Total and Local Quadratic Indices of the Molecular Pseudograph´s Atom Adjacency Matrix:Applications to the Prediction of Physical Properties of Organic Compounds (2003) Molecules, 8, pp. 687-726
dcterms.bibliographicCitationMontero-Torres, A., Garcia-Sanchez, R.N., Marrero-Ponce, Y., Machado-Tugores, Y., Nogal-Ruiz, J.J., Martinez-Fernandez, A.R., Aran, V.J., Torrens, F., Nonstochastic quadratic fingerprints and LDA-based QSAR models in hit and lead generation through virtual screening: Theoretical and experimental assessment of a promising method for the discovery of new antimalarial compounds (2006) Eur. J. Med. Chem., 41 (4), pp. 483-493
dcterms.bibliographicCitationMeneses-Marcel, A., Marrero-Ponce, Y., Machado-Tugores, Y., Montero-Torres, A., Pereira, D.M., Escario, J.A., Nogal-Ruiz, J.J., Garcia Sanchez, R.N., A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: Outcomes of in silico studies supported by experimental results (2005) Bioorg. Med. Chem. Lett., 15 (17), pp. 3838-3843
dcterms.bibliographicCitationRescigno, A., Casañola-Martin, G.M., Sanjust, E., Zucca, P., Marrero- Ponce, Y., Vanilloid Derivatives as Tyrosinase Inhibitors Driven by Virtual Screening-Based QSAR Models (2011) Drug Test. Anal., 3 (3), pp. 176-181
dcterms.bibliographicCitationLe-Thi-Thu, H., Marrero-Ponce, Y., Casanola Martin, G.M., Cardoso, G.C., Chávez, M.C., Garcia, M.M., Morell, C., Abad, C., Nonlinear Supervised Machine Learning Approaches for QSAR Depiction of Tyrosinase Inhibitory Activity (2011) Mol. Inform., 30 (6-7), pp. 527-537
dcterms.bibliographicCitationHuong Le-Thi-Thu, H., Cardoso, G.C., Casañola-Martín, G.M., Marrero-Ponce, Y., Puris, A., Torrens, F., Rescigno, A., Abad, C., QSAR Models for Tyrosinase Inhibitory Activity Description Applying Modern Statistical Classification Techniques: A Comparative Study (2010) Chemom. Int. Lab. Sys., 104, pp. 249-259
dcterms.bibliographicCitationMarrero-Ponce, Y., Medina, R., Castro, E.A., De Armas, R., González, H., Romero, V., Torrens, F., Protein Quadratic Indices of the ¨Macromolecular Pseudograph´s α-Carbon Atom Adjacency Matrix. 1. Prediction of Arc Repressor Alanine-mutant´s Stability (2004) Molecules, 9, pp. 1124-1147
dcterms.bibliographicCitationMarrero-Ponce, Y., Nodarse, D., González, H.D., Ramos De Armas, R., Romero-Zaldivar, V., Torrens, F., Castro, E., Nucleic Acid Quadratic Indices of the Macromolecular Graph’s Nucleotides Adjacency Matrix. Modeling of Footprints after the Interaction of Paromomycin with the HIV-1 Ψ-RNA Packaging Region (2004) Int. J. Mol. Sci., 5, pp. 276-293
dcterms.bibliographicCitationLuan, F., Cordeiro, M.N., Alonso, N., Garcia-Mera, X., Caamano, O., Romero-Duran, F.J., Yanez, M., Gonzalez-Diaz, H., TOPSMODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases (2013) Bioorg. Med. Chem., 21 (7), pp. 1870-1879
dcterms.bibliographicCitationAlonso, N., Caamano, O., Romero-Duran, F.J., Luan, F., Dias Soeiro Cordeiro, M.N., Yanez, M., Gonzalez-Diaz, H., Garcia-Mera, X., Model for High-Throughput Screening of Multi-Target Drugs in Chemical Neurosciences
dcterms.bibliographicCitationSynthesis, Assay and Theoretic Study of Rasagiline Carbamates (2013) ACS Chem. Neurosci., 4 (10), pp. 1393-1403
dcterms.bibliographicCitationConcu, R., Dea-Ayuela, M.A., Perez-Montoto, L.G., Prado-Prado, F.J., Uriarte, E., Bolas-Fernandez, F., Podda, G., Gonzalez-Diaz, H., 3D entropy and moments prediction of enzyme classes and experimental-theoretic study of peptide fingerprints in Leishmania parasites (2009) Biochim. Biophys. Acta, 1794 (12), pp. 1784-1794
dcterms.bibliographicCitationSpeck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Multi-target drug discovery in anti-cancer therapy: Fragment-based approach toward the design of potent and versatile anti-prostate cancer agents (2011) Bioorg. Med. Chem., 19 (21), pp. 6239-6244
dcterms.bibliographicCitationTenorio-Borroto, E., Penuelas Rivas, C.G., Vasquez Chagoyan, J.C., Castanedo, N., Prado-Prado, F.J., Garcia-Mera, X., Gonzalez-Diaz, H., ANN multiplexing model of drugs effect on macrophages
dcterms.bibliographicCitationtheoretical and flow cytometry study on the cytotoxicity of the antimicrobial drug G1 in spleen (2012) Bioorg. Med. Chem., 20 (20), pp. 6181-6194
dcterms.bibliographicCitationHill, T., Lewicki, P., STATISTICS Methodsand Applications. A Comprehensive Reference for Science, Industry and Data Mining. StatSoft (2006) Tulsa, 1, p. 813
dcterms.bibliographicCitation(2002) STATISTICA (Data Analysis Software System), Version 6.0, , www.statsoft.com.Statsoft, StatSoft.Inc. , Inc., 6.0
dcterms.bibliographicCitationMarrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., Atom, atomtype and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic (2005) Bioorg. Med. Chem., 13 (4), pp. 1005-1020
dcterms.bibliographicCitationMarrero-Ponce, Y., Machado-Tugores, Y., Pereira, D.M., Escario, J.A., Barrio, A.G., Nogal-Ruiz, J.J., Ochoa, C., Meneses-Marcel, A., A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices (2005) Curr. Drug Discov. Technol., 2 (4), pp. 245-265
dcterms.bibliographicCitationGerets, H.H., Dhalluin, S., Atienzar, F.A., Multiplexing cell viability assays (2011) Methods Mol. Biol., 740, pp. 91-101
dcterms.bibliographicCitationGarcía-Domenech, R., Zanni, R., Galvez-Llompart, M., De Julián- Ortiz, J.V., Modeling anti-allergic natural compounds by molecular topology (2013) Comb. Chem. High Throughput Screen, 16 (8), pp. 628-635
dcterms.bibliographicCitationSubramaniam, S., Mehrotra, M., Gupta, D., Support Vector Machine Based Prediction of P. Falciparum Proteasome Inhibitors and Development of Focused Library by Molecular Docking (2011) Comb. Chem. High Throughput Screen, 14 (10), pp. 898-907
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.subject.keywordsAtom-based quadratic indices
dc.subject.keywordsCancer
dc.subject.keywordsCHEMBL
dc.subject.keywordsMalaria
dc.subject.keywordsMoving average
dc.subject.keywordsMulti-scale and multi-output model
dc.subject.keywordsMulti-target
dc.subject.keywordsQSAR
dc.subject.keywordsUPP inhibitor
dc.subject.keywordsAntineoplastic agent
dc.subject.keywordsProteasome
dc.subject.keywordsUbiquitin
dc.subject.keywordsAntimalarial agent
dc.subject.keywordsAntineoplastic agent
dc.subject.keywordsProteasome
dc.subject.keywordsUbiquitin
dc.subject.keywordsALMA model
dc.subject.keywordsApoptosis
dc.subject.keywordsArticle
dc.subject.keywordsBob Jenkins operator
dc.subject.keywordsCell cycle
dc.subject.keywordsComputer program
dc.subject.keywordsDiagnostic accuracy
dc.subject.keywordsDNA repair
dc.subject.keywordsGene expression
dc.subject.keywordsMalaria
dc.subject.keywordsModel
dc.subject.keywordsMus musculus
dc.subject.keywordsOryctolagus cuniculus
dc.subject.keywordsPlasmodium falciparum
dc.subject.keywordsQuantitative structure activity relation
dc.subject.keywordsRattus norvegicus
dc.subject.keywordsSensitivity and specificity
dc.subject.keywordsSignal transduction
dc.subject.keywordsBiology
dc.subject.keywordsDrug database
dc.subject.keywordsDrug development
dc.subject.keywordsDrug effects
dc.subject.keywordsHuman
dc.subject.keywordsMalaria
dc.subject.keywordsMetabolism
dc.subject.keywordsMolecularly targeted therapy
dc.subject.keywordsNeoplasms
dc.subject.keywordsProtein degradation
dc.subject.keywordsAntimalarials
dc.subject.keywordsAntineoplastic agents
dc.subject.keywordsComputational Biology
dc.subject.keywordsDatabases, Pharmaceutical
dc.subject.keywordsDrug Discovery
dc.subject.keywordsHumans
dc.subject.keywordsMalaria
dc.subject.keywordsMolecular Targeted Therapy
dc.subject.keywordsNeoplasms
dc.subject.keywordsProteasome Endopeptidase Complex
dc.subject.keywordsProteolysis
dc.subject.keywordsUbiquitin
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesproteasome, 140879-24-9; ubiquitin, 60267-61-0; Antimalarials; Antineoplastic Agents; Proteasome Endopeptidase Complex; Ubiquitin
dc.description.notesGonzalez-Diaz H. acknowledges financial support from the grant MINECO (CTQ2013-41229-P), Spain.
dc.type.spaArtículo
dc.identifier.orcid9434652400
dc.identifier.orcid36454896800
dc.identifier.orcid6701762262
dc.identifier.orcid55665599200
dc.identifier.orcid6602955498
dc.identifier.orcid7103043662
dc.identifier.orcid6603767394


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.