Mostrar el registro sencillo del ítem

dc.creatorVega C.A.
dc.creatorArias Amaya, Fabián
dc.date.accessioned2020-03-26T16:32:41Z
dc.date.available2020-03-26T16:32:41Z
dc.date.issued2016
dc.identifier.citationInternational Journal of Computational Methods; Vol. 13, Núm. 6
dc.identifier.issn02198762
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8974
dc.description.abstractIn this work, we apply adaptive multiresolution (Harten's approach) characteristic-wise fifth-order Weighted Essentially Non-Oscillatory (WENO) for computing the numerical solution of a polydisperse sedimentation model, namely, the Höfler and Schwarzer model. In comparison to other related works, time discretization is carried out with the ten-stage fourth-order strong stability preserving Runge-Kutta method which is more efficient than the widely used optimal third-order TVD Runge-Kutta method. Numerical results with errors, convergence rates and CPU times are included for four and 11 species. © 2016 World Scientific Publishing Company.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWorld Scientific Publishing Co. Pte Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84967102576&doi=10.1142%2fS0219876216500377&partnerID=40&md5=5e51497960f2d1bb8cf3e76f42051863
dc.titleNumerical Simulations of a Polydisperse Sedimentation Model by Using Spectral WENO Method with Adaptive Multiresolution
dcterms.bibliographicCitationAnderson, J., A secular equation for the eigenvalues of a diagonal matrix perturbation (1996) Lin. Alg. Appl., 246, pp. 49-70
dcterms.bibliographicCitationBatchelor, G.K., Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory (1982) J. Fluid Mech., 119, pp. 379-408
dcterms.bibliographicCitationBatchelor, G.K., Wen, C.S., Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results (1982) J. Fluid Mech., 124, pp. 495-528
dcterms.bibliographicCitationBürger, R., Kozakevicius, A., Adaptive multiresolution WENO schemes for multi-species kinematic flow models (2007) J. Comput. Phys., 224, pp. 1190-1222
dcterms.bibliographicCitationBürger, R., Donat, R., Mulet, P., Vega, C.A., Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian (2010) SIAM J. Appl. Math., 70, pp. 2186-2213
dcterms.bibliographicCitationBürger, R., Donat, R., Mulet, P., Vega, C.A., On the implementation of WENO schemes for a class of polydisperse sedimentation models (2011) J. Comput. Phys., 230, pp. 2322-2344
dcterms.bibliographicCitationBürger, R., Mulet, P., Villada, L., Spectral WENO schemes with adaptive mesh refinement for models of polydisperse sedimentation (2013) ZAMM Z. Angew. Math. Mech., 93, pp. 373-386
dcterms.bibliographicCitationChiavassa, G., Donat, R., Müller, S., Multiresolution-based adaptive schemes for hyperbolic conservation laws (2003) Adaptive Mesh Refinement - Theory and Applications, 41, pp. 137-159. , eds. Plewa, T., Lindec, T. and Weiss, V. G., Lecture Notes in Computational Science and Engineering, (Springer-Verlag, Berlin)
dcterms.bibliographicCitationDavis, R.H., Gecol, H., Hindered settling function with no empirical parameters for polydisperse suspensions (1994) AIChE J., 40, pp. 570-575
dcterms.bibliographicCitationDonat, R., Mulet, P., A secular equation for the Jacobian matrix of certain multi-species kinematic flow models (2010) Numer. Methods Part. Differ. Equ., 26, pp. 159-175
dcterms.bibliographicCitationGottlieb, S., Ketcheson, D.I., Shu, C.W., High order strong stability preserving time discretization (2009) J. Sci. Comput., 38, pp. 251-289
dcterms.bibliographicCitationGreenspan, H.P., Ungarish, M., On hindered settling of particles of different sizes (1982) Int. J. Multiphase Flow, 8, pp. 587-604
dcterms.bibliographicCitationHarten, A., Multiresolution algorithms for the numerical solution of hyperbolic conservation laws (1995) Commun. Pure Appl. Math., 48, pp. 1305-1342
dcterms.bibliographicCitationHenrick, A.K., Aslam, T.D., Powers, J.M., Mapped weighted essentially nonoscillatory schemes: Achieving optimal order near critical points (2005) J. Comput. Phys., 207, pp. 542-567
dcterms.bibliographicCitationHöfler, K., (2000) Simulation and Modeling of Mono-and Bidisperse Suspensions, , Doctoral Thesis, Institut für Computeranwendungen, Universität Stuttgart, Germany
dcterms.bibliographicCitationHöfler, K., Schwarzer, S., The structure of bidisperse suspensionsal low Reynolds numbers (2000) Multifield Problems: State of the Art, pp. 42-49. , Sändig, A. M., Schiehlen, W. and Wendland, W. L., (Springer Verlag, Berlin)
dcterms.bibliographicCitationJiang, G.S., Shu, C.W., Efficient implementation of weighted ENO schemes (1996) J. Comput. Phys., 126, pp. 202-228
dcterms.bibliographicCitationKetcheson, D.I., Highly efficient stability preserving Runge-Kutta methods with low storage implementation (2008) J. Sci. Comput., 30, pp. 2113-2136
dcterms.bibliographicCitationLiu, X.D., Osher, S., Chan, T., Weighted essentially non-oscillatory schemes (1994) J. Comput. Phys., 115, pp. 200-212
dcterms.bibliographicCitationMüller, S., (2003) Adaptive Multiscale Schemes for Conservation Laws, , 1st edition (Springer)
dcterms.bibliographicCitationShu, C.H., High order weighted essentially nonoscillatory schemes for convection dominated problems (2009) SIAM Rev., 51, pp. 82-126
dcterms.bibliographicCitationTenaud, C., Duarte, M., Tutorials on adaptive multiresolution for mesh refinement applied to conservation law problems (2011) ESAIM Proc., 34, pp. 184-239
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1142/S0219876216500377
dc.subject.keywordsAdaptive multiresolution
dc.subject.keywordsHöfler and Schwarzer model
dc.subject.keywordsSpectral-based WENO
dc.subject.keywordsSSPRK methods
dc.subject.keywordsNumerical methods
dc.subject.keywordsNumerical models
dc.subject.keywordsPolydispersity
dc.subject.keywordsAdaptive multi resolutions
dc.subject.keywordsEssentially non-oscillatory
dc.subject.keywordsNumerical solution
dc.subject.keywordsSedimentation model
dc.subject.keywordsSpectral-based WENO
dc.subject.keywordsSSPRK methods
dc.subject.keywordsStrong stability preserving
dc.subject.keywordsTime discretization
dc.subject.keywordsRunge Kutta methods
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid56423657700
dc.identifier.orcid57189266430


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.