Mostrar el registro sencillo del ítem
Standard passivity-based control for multi-hydro-turbine governing systems with surge tank
dc.creator | Gil-González W. | |
dc.creator | Montoya O.D. | |
dc.creator | Garces A. | |
dc.date.accessioned | 2020-03-26T16:32:40Z | |
dc.date.available | 2020-03-26T16:32:40Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Applied Mathematical Modelling; Vol. 79, pp. 1-17 | |
dc.identifier.issn | 0307904X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8961 | |
dc.description.abstract | This paper addresses the problem of control design for hydro-turbine governing systems with surge tanks from the perspective of standard passivity-based control. The dynamic model of a synchronous machine is considered in conjunction with a model of the hydro-turbine to generate an eleventh-order nonlinear set of differential equations. An Euler–Lagrange representati of the system and its open-loop dynamics is developed. Then, the standard passivity-based control is applied to design a global and asymptotically stable controller in closed-loop operation. The proposed control is decentralized to avoid challenges of communication between the hydro-turbine governing systems. The proposed standard passivity-based control approach is compared with two control approaches. First, a classical standard cascade proportional-integral-derivative controller is applied for the governing system, the automatic voltage regulator, and the excitation system. Second, a sliding mode control is also implemented in the governing system. Two test systems were used to validate the performance of the proposed controller. The first test system is a single machine connected to an infinite bus, and the second test system is the well-known Western System Coordinating Council's multimachine system. Overall, simulation results show that the proposed controller exhibits a better dynamic response with shorter stabilization times and lower peaks during the transient periods. © 2019 Elsevier Inc. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Inc. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075761483&doi=10.1016%2fj.apm.2019.11.010&partnerID=40&md5=42c3d3b27f91f1332640e24c482d593c | |
dc.title | Standard passivity-based control for multi-hydro-turbine governing systems with surge tank | |
dcterms.bibliographicCitation | Jan, M., Janusz, W., James, R., Power System Dynamics: Stability and Control (2008), 2 ed. John Wily & Sons | |
dcterms.bibliographicCitation | Smil, V., Chapter 1: Energy System: Their Basic Properties (2016) Energy Transitions: Global and National Perspectives, , 2nd ed. Praeger Santa Barbara | |
dcterms.bibliographicCitation | Agency, I.E., Key World Energy Statistics 2018 (2018), International Energy Agency Paris | |
dcterms.bibliographicCitation | (2018), https://www.xm.com.co/Paginas/Generacion/tipos.aspx, XM, Effective capacity by type of generation (Online) | |
dcterms.bibliographicCitation | Pico, H.V., McCalley, J.D., Angel, A., Leon, R., Castrillon, N.J., Analysis of very low frequency oscillations in hydro-dominant power systems using multi-unit modeling (2012) IEEE Trans. Power Syst., 27 (4), pp. 1906-1915 | |
dcterms.bibliographicCitation | Gil-González, W., Garces, A., Escobar, A., Passivity-based control and stability analysis for hydro-turbine governing systems (2019) Appl. Math. Modell., 68, pp. 471-486 | |
dcterms.bibliographicCitation | Gil-González, W., Garces, A., Escobar-Mejía, A., Montoya, O.D., Passivity-based control for hydro–turbine governing systems (2018) Proceedings of the IEEE PES Transmission Distribution Conference and Exhibition - Latin America (T D-LA), pp. 1-5 | |
dcterms.bibliographicCitation | IEEE working group report, Hydraulic turbine and turbine control models for system dynamic studies (1992) IEEE Trans. Power Syst., 7 (1), pp. 167-179 | |
dcterms.bibliographicCitation | Huerta, H., Loukianov, A., Cañedo, J., Passivity sliding mode control of large-scale power systems (2018) IEEE Trans. Control Syst. Technol., (99), pp. 1-9 | |
dcterms.bibliographicCitation | Cerman, O., Hus̆ek, P., Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism (2012) Expert Syst. Appl., 39 (11), pp. 10269-10277 | |
dcterms.bibliographicCitation | Liang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y., Nonlinear dynamic analysis and robust controller design for francis hydraulic turbine regulating system with a straight-tube surge tank (2017) Mech. Syst. Sig. Process., 85, pp. 927-946 | |
dcterms.bibliographicCitation | Guo, W., Yang, J., Stability performance for primary frequency regulation of hydro-turbine governing system with surge tank (2018) Appl. Math. Modell., 54, pp. 446-466 | |
dcterms.bibliographicCitation | Zhang, R., Chen, D., Ma, X., Nonlinear predictive control of a hydropower system model (2015) Entropy, 17 (9), pp. 6129-6149 | |
dcterms.bibliographicCitation | Zhang, G., Cheng, Y., Lu, N., Guo, Q., Research of hydro-turbine governor supplementary control strategy for islanding AC grid at sending terminal of HVDC system (2016) IEEE Trans. Energy Convers., 31 (4), pp. 1229-1238 | |
dcterms.bibliographicCitation | Zhang, H., Chen, D., Wu, C., Wang, X., Lee, J.-M., Jung, K.-H., Dynamic modeling and dynamical analysis of pump-turbines in s-shaped regions during runaway operation (2017) Energy Convers. Manag., 138, pp. 375-382 | |
dcterms.bibliographicCitation | Zhang, H., Chen, D., Xu, B., Patelli, E., Tolo, S., Dynamic analysis of a pumped-storage hydropower plant with random power load (2018) Mech. Syst. Sig. Process., 100, pp. 524-533 | |
dcterms.bibliographicCitation | Zhang, H., Chen, D., Guo, P., Luo, X., George, A., A novel surface-cluster approach towards transient modeling of hydro-turbine governing systems in the start-up process (2018) Energy Convers. Manag., 165, pp. 861-868 | |
dcterms.bibliographicCitation | Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C., An adaptively fast fuzzy fractional order pid control for pumped storage hydro unit using improved gravitational search algorithm (2016) Energy Convers. Manag., 111, pp. 67-78 | |
dcterms.bibliographicCitation | Li, C., Mao, Y., Zhou, J., Zhang, N., An, X., Design of a fuzzy-PID controller for a nonlinear hydraulic turbine governing system by using a novel gravitational search algorithm based on cauchy mutation and mass weighting (2017) Appl. Soft Comput., 52, pp. 290-305 | |
dcterms.bibliographicCitation | Zhu, W., Zheng, Y., Dai, J., Zhou, J., Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit (2017) Eng. Appl. Artif. Intell., 58, pp. 79-87 | |
dcterms.bibliographicCitation | Kishor, N., Singh, S., Simulated response of NN based identification and predictive control of hydro plant (2007) Expert Syst. Appl., 32 (1), pp. 233-244 | |
dcterms.bibliographicCitation | Zeng, Y., Zhang, L., Xu, T., Dong, H., Improvement rotor angle oscillation of hydro turbine generating sets based on hamiltonian damping injecting method (2010) Proceedings of the Power and Energy Engineering Conference (APPEEC), pp. 1-5 | |
dcterms.bibliographicCitation | Xu, T., Zhang, L., Zeng, Y., Qian, J., Hamiltonian model of hydro turbine with sharing sommon conduit (2012) Proceedings of the Asia-Pacific Power and Energy Engineering Conference, pp. 1-5 | |
dcterms.bibliographicCitation | Xu, B., Wang, F., Chen, D., Zhang, H., Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load (2016) Energy Convers. Manage., 108, pp. 478-487 | |
dcterms.bibliographicCitation | Li, H., Chen, D., Zhang, H., Wu, C., Wang, X., Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing (2017) Appl. Energy, 185 Part 1, pp. 244-253 | |
dcterms.bibliographicCitation | Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (superconducting magnetic energy storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384 | |
dcterms.bibliographicCitation | Anderson, P.M., Fouad, A.A., Power System Control and Stability (2003), Wiley-IEEE Press | |
dcterms.bibliographicCitation | Ortega, R., Spong, M.W., Adaptive motion control of rigid robots: a tutorial (1989) Automatica, 25 (6), pp. 877-888 | |
dcterms.bibliographicCitation | Ortega, R., Van Der Schaft, A., Castanos, F., Astolfi, A., Control by interconnection and standard passivity-based control of port-hamiltonian systems (2008) IEEE Trans. Autom. control, 53 (11), pp. 2527-2542 | |
dcterms.bibliographicCitation | Ortega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J., Passivity-based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (2013), Springer Science & Business Media | |
dcterms.bibliographicCitation | Leon, A., Solsona, J., Valla, M., Comparison among nonlinear excitation control strategies used for damping power system oscillations (2012) Energy Convers. Manage., 53 (1), pp. 55-67 | |
dcterms.bibliographicCitation | (2007), pp. 1-33. , IEEE Standard definitions for excitation systems for synchronous machines, IEEE Std 421.1–2007 (Revision of IEEE Std 421.1–1986) | |
dcterms.bibliographicCitation | Máslo, K., Kasembe, A., Kolcun, M., Simplification and unification of IEEE standard models for excitation systems (2016) Electr. Power Syst. Res., 140, pp. 132-138 | |
dcterms.bibliographicCitation | Liang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y., Nonlinear dynamic analysis and robust controller design for francis hydraulic turbine regulating system with a straight-tube surge tank (2017) Mech. Syst. Signal Process., 85, pp. 927-946 | |
dcterms.bibliographicCitation | Gil González, W., Garces, A., Fosso, O., Escobar, A., Passivity-based control of power systems considering hydro-turbine with surge tank (2019) IEEE Trans. Power Syst., , 1–1 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.apm.2019.11.010 | |
dc.subject.keywords | Decentralized control approach | |
dc.subject.keywords | Euler–Lagrange representation | |
dc.subject.keywords | Hydro turbine governing systems | |
dc.subject.keywords | Lyapunov's stability | |
dc.subject.keywords | Standard passivity-based control | |
dc.subject.keywords | Control system analysis | |
dc.subject.keywords | Decentralized control | |
dc.subject.keywords | Differential equations | |
dc.subject.keywords | Hydraulic turbines | |
dc.subject.keywords | Lagrange multipliers | |
dc.subject.keywords | Nonlinear equations | |
dc.subject.keywords | Proportional control systems | |
dc.subject.keywords | Scheduling algorithms | |
dc.subject.keywords | Sliding mode control | |
dc.subject.keywords | Surge tanks | |
dc.subject.keywords | Two term control systems | |
dc.subject.keywords | Voltage regulators | |
dc.subject.keywords | Asymptotically stable | |
dc.subject.keywords | Automatic voltage regulators | |
dc.subject.keywords | Closed-loop operation | |
dc.subject.keywords | Hydro turbine governing systems | |
dc.subject.keywords | Lagrange | |
dc.subject.keywords | Lyapunov's stability | |
dc.subject.keywords | Passivity based control | |
dc.subject.keywords | Proportional integral derivative controllers | |
dc.subject.keywords | Controllers | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 36449223500 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.