Mostrar el registro sencillo del ítem

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:40Z
dc.date.available2020-03-26T16:32:40Z
dc.date.issued2020
dc.identifier.citationApplied Mathematical Modelling; Vol. 79, pp. 1-17
dc.identifier.issn0307904X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8961
dc.description.abstractThis paper addresses the problem of control design for hydro-turbine governing systems with surge tanks from the perspective of standard passivity-based control. The dynamic model of a synchronous machine is considered in conjunction with a model of the hydro-turbine to generate an eleventh-order nonlinear set of differential equations. An Euler–Lagrange representati of the system and its open-loop dynamics is developed. Then, the standard passivity-based control is applied to design a global and asymptotically stable controller in closed-loop operation. The proposed control is decentralized to avoid challenges of communication between the hydro-turbine governing systems. The proposed standard passivity-based control approach is compared with two control approaches. First, a classical standard cascade proportional-integral-derivative controller is applied for the governing system, the automatic voltage regulator, and the excitation system. Second, a sliding mode control is also implemented in the governing system. Two test systems were used to validate the performance of the proposed controller. The first test system is a single machine connected to an infinite bus, and the second test system is the well-known Western System Coordinating Council's multimachine system. Overall, simulation results show that the proposed controller exhibits a better dynamic response with shorter stabilization times and lower peaks during the transient periods. © 2019 Elsevier Inc.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075761483&doi=10.1016%2fj.apm.2019.11.010&partnerID=40&md5=42c3d3b27f91f1332640e24c482d593c
dc.titleStandard passivity-based control for multi-hydro-turbine governing systems with surge tank
dcterms.bibliographicCitationJan, M., Janusz, W., James, R., Power System Dynamics: Stability and Control (2008), 2 ed. John Wily & Sons
dcterms.bibliographicCitationSmil, V., Chapter 1: Energy System: Their Basic Properties (2016) Energy Transitions: Global and National Perspectives, , 2nd ed. Praeger Santa Barbara
dcterms.bibliographicCitationAgency, I.E., Key World Energy Statistics 2018 (2018), International Energy Agency Paris
dcterms.bibliographicCitation(2018), https://www.xm.com.co/Paginas/Generacion/tipos.aspx, XM, Effective capacity by type of generation (Online)
dcterms.bibliographicCitationPico, H.V., McCalley, J.D., Angel, A., Leon, R., Castrillon, N.J., Analysis of very low frequency oscillations in hydro-dominant power systems using multi-unit modeling (2012) IEEE Trans. Power Syst., 27 (4), pp. 1906-1915
dcterms.bibliographicCitationGil-González, W., Garces, A., Escobar, A., Passivity-based control and stability analysis for hydro-turbine governing systems (2019) Appl. Math. Modell., 68, pp. 471-486
dcterms.bibliographicCitationGil-González, W., Garces, A., Escobar-Mejía, A., Montoya, O.D., Passivity-based control for hydro–turbine governing systems (2018) Proceedings of the IEEE PES Transmission Distribution Conference and Exhibition - Latin America (T D-LA), pp. 1-5
dcterms.bibliographicCitationIEEE working group report, Hydraulic turbine and turbine control models for system dynamic studies (1992) IEEE Trans. Power Syst., 7 (1), pp. 167-179
dcterms.bibliographicCitationHuerta, H., Loukianov, A., Cañedo, J., Passivity sliding mode control of large-scale power systems (2018) IEEE Trans. Control Syst. Technol., (99), pp. 1-9
dcterms.bibliographicCitationCerman, O., Hus̆ek, P., Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism (2012) Expert Syst. Appl., 39 (11), pp. 10269-10277
dcterms.bibliographicCitationLiang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y., Nonlinear dynamic analysis and robust controller design for francis hydraulic turbine regulating system with a straight-tube surge tank (2017) Mech. Syst. Sig. Process., 85, pp. 927-946
dcterms.bibliographicCitationGuo, W., Yang, J., Stability performance for primary frequency regulation of hydro-turbine governing system with surge tank (2018) Appl. Math. Modell., 54, pp. 446-466
dcterms.bibliographicCitationZhang, R., Chen, D., Ma, X., Nonlinear predictive control of a hydropower system model (2015) Entropy, 17 (9), pp. 6129-6149
dcterms.bibliographicCitationZhang, G., Cheng, Y., Lu, N., Guo, Q., Research of hydro-turbine governor supplementary control strategy for islanding AC grid at sending terminal of HVDC system (2016) IEEE Trans. Energy Convers., 31 (4), pp. 1229-1238
dcterms.bibliographicCitationZhang, H., Chen, D., Wu, C., Wang, X., Lee, J.-M., Jung, K.-H., Dynamic modeling and dynamical analysis of pump-turbines in s-shaped regions during runaway operation (2017) Energy Convers. Manag., 138, pp. 375-382
dcterms.bibliographicCitationZhang, H., Chen, D., Xu, B., Patelli, E., Tolo, S., Dynamic analysis of a pumped-storage hydropower plant with random power load (2018) Mech. Syst. Sig. Process., 100, pp. 524-533
dcterms.bibliographicCitationZhang, H., Chen, D., Guo, P., Luo, X., George, A., A novel surface-cluster approach towards transient modeling of hydro-turbine governing systems in the start-up process (2018) Energy Convers. Manag., 165, pp. 861-868
dcterms.bibliographicCitationXu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C., An adaptively fast fuzzy fractional order pid control for pumped storage hydro unit using improved gravitational search algorithm (2016) Energy Convers. Manag., 111, pp. 67-78
dcterms.bibliographicCitationLi, C., Mao, Y., Zhou, J., Zhang, N., An, X., Design of a fuzzy-PID controller for a nonlinear hydraulic turbine governing system by using a novel gravitational search algorithm based on cauchy mutation and mass weighting (2017) Appl. Soft Comput., 52, pp. 290-305
dcterms.bibliographicCitationZhu, W., Zheng, Y., Dai, J., Zhou, J., Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit (2017) Eng. Appl. Artif. Intell., 58, pp. 79-87
dcterms.bibliographicCitationKishor, N., Singh, S., Simulated response of NN based identification and predictive control of hydro plant (2007) Expert Syst. Appl., 32 (1), pp. 233-244
dcterms.bibliographicCitationZeng, Y., Zhang, L., Xu, T., Dong, H., Improvement rotor angle oscillation of hydro turbine generating sets based on hamiltonian damping injecting method (2010) Proceedings of the Power and Energy Engineering Conference (APPEEC), pp. 1-5
dcterms.bibliographicCitationXu, T., Zhang, L., Zeng, Y., Qian, J., Hamiltonian model of hydro turbine with sharing sommon conduit (2012) Proceedings of the Asia-Pacific Power and Energy Engineering Conference, pp. 1-5
dcterms.bibliographicCitationXu, B., Wang, F., Chen, D., Zhang, H., Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load (2016) Energy Convers. Manage., 108, pp. 478-487
dcterms.bibliographicCitationLi, H., Chen, D., Zhang, H., Wu, C., Wang, X., Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing (2017) Appl. Energy, 185 Part 1, pp. 244-253
dcterms.bibliographicCitationXu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (superconducting magnetic energy storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384
dcterms.bibliographicCitationAnderson, P.M., Fouad, A.A., Power System Control and Stability (2003), Wiley-IEEE Press
dcterms.bibliographicCitationOrtega, R., Spong, M.W., Adaptive motion control of rigid robots: a tutorial (1989) Automatica, 25 (6), pp. 877-888
dcterms.bibliographicCitationOrtega, R., Van Der Schaft, A., Castanos, F., Astolfi, A., Control by interconnection and standard passivity-based control of port-hamiltonian systems (2008) IEEE Trans. Autom. control, 53 (11), pp. 2527-2542
dcterms.bibliographicCitationOrtega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J., Passivity-based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (2013), Springer Science & Business Media
dcterms.bibliographicCitationLeon, A., Solsona, J., Valla, M., Comparison among nonlinear excitation control strategies used for damping power system oscillations (2012) Energy Convers. Manage., 53 (1), pp. 55-67
dcterms.bibliographicCitation(2007), pp. 1-33. , IEEE Standard definitions for excitation systems for synchronous machines, IEEE Std 421.1–2007 (Revision of IEEE Std 421.1–1986)
dcterms.bibliographicCitationMáslo, K., Kasembe, A., Kolcun, M., Simplification and unification of IEEE standard models for excitation systems (2016) Electr. Power Syst. Res., 140, pp. 132-138
dcterms.bibliographicCitationLiang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y., Nonlinear dynamic analysis and robust controller design for francis hydraulic turbine regulating system with a straight-tube surge tank (2017) Mech. Syst. Signal Process., 85, pp. 927-946
dcterms.bibliographicCitationGil González, W., Garces, A., Fosso, O., Escobar, A., Passivity-based control of power systems considering hydro-turbine with surge tank (2019) IEEE Trans. Power Syst., , 1–1
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.apm.2019.11.010
dc.subject.keywordsDecentralized control approach
dc.subject.keywordsEuler–Lagrange representation
dc.subject.keywordsHydro turbine governing systems
dc.subject.keywordsLyapunov's stability
dc.subject.keywordsStandard passivity-based control
dc.subject.keywordsControl system analysis
dc.subject.keywordsDecentralized control
dc.subject.keywordsDifferential equations
dc.subject.keywordsHydraulic turbines
dc.subject.keywordsLagrange multipliers
dc.subject.keywordsNonlinear equations
dc.subject.keywordsProportional control systems
dc.subject.keywordsScheduling algorithms
dc.subject.keywordsSliding mode control
dc.subject.keywordsSurge tanks
dc.subject.keywordsTwo term control systems
dc.subject.keywordsVoltage regulators
dc.subject.keywordsAsymptotically stable
dc.subject.keywordsAutomatic voltage regulators
dc.subject.keywordsClosed-loop operation
dc.subject.keywordsHydro turbine governing systems
dc.subject.keywordsLagrange
dc.subject.keywordsLyapunov's stability
dc.subject.keywordsPassivity based control
dc.subject.keywordsProportional integral derivative controllers
dc.subject.keywordsControllers
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.