Mostrar el registro sencillo del ítem
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
dc.contributor.editor | Solano A. | |
dc.contributor.editor | Ordonez H. | |
dc.creator | Caicedo-Torres W. | |
dc.creator | Montes-Grajales D. | |
dc.creator | Miranda-Castro W. | |
dc.creator | Fennix Agudelo, Mary Andrea | |
dc.creator | Agudelo-Herrera N. | |
dc.date.accessioned | 2020-03-26T16:32:40Z | |
dc.date.available | 2020-03-26T16:32:40Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 735, pp. 472-484 | |
dc.identifier.isbn | 9783319665610 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8960 | |
dc.description.abstract | Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017. | eng |
dc.description.sponsorship | Universidad Autónoma de Bucaramanga: TRFCI-1P2016, UNAM 2016 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b | |
dc.title | Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia | |
dcterms.bibliographicCitation | (2017), https://github.com/williamcaicedo/morbidityPrediction, Accessed 25 Mar 2017 | |
dcterms.bibliographicCitation | Althouse, B.M., Ng, Y.Y., Cummings, D.A.T., Prediction of dengue incidence using search query surveillance (2011) Plos Negl. Trop. Dis, 5 (8), pp. 1-7. , http://dx.doi.org/10.1371 | |
dcterms.bibliographicCitation | Caicedo-Torres, W., Payares, F., A machine learning model for occupancy rates and demand forecasting in the hospitality industry (2016) IBERAMIA 2016. LNCS, 10022. , Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, Cham | |
dcterms.bibliographicCitation | Cawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression (2002) Neural Process. Lett, 16 (3), pp. 293-302. , http://dx.doi.org/10.1023/A | |
dcterms.bibliographicCitation | Chu, W., Ghahramani, Z., Gaussian processes for ordinal regression (2005) J. Mach. Learn. Res, 6, pp. 1019-1041 | |
dcterms.bibliographicCitation | Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018 | |
dcterms.bibliographicCitation | Cruz, J.A., Wishart, D.S., Applications of machine learning in cancer prediction and prognosis (2006) Cancer Inform, 2, pp. 59-77. , https://era.library.ualberta.ca/files/1v53jx76c/CancerInformatics2200759.pdf | |
dcterms.bibliographicCitation | Eastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C., Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in colombia (2014) Am. J. Trop. Med. Hyg., 91 (3), pp. 598-610 | |
dcterms.bibliographicCitation | Escobar, L.E., Qiao, H., Peterson, A.T., Forecasting chikungunya spread in the Americas via data-driven empirical approaches (2016) Parasites Vectors, 9 (1), p. 112. , http://dx.doi.org/10.1186/s13071-016-1403-y | |
dcterms.bibliographicCitation | Flasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): A model comparison study (2016) Plos Med, 13 (11) | |
dcterms.bibliographicCitation | Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , http://dx.doi.org/10.1002/9781119244592, Wiley, Hoboken | |
dcterms.bibliographicCitation | Golding, N., Wilson, A.L., Moyes, C.L., Cano, J., Pigott, D.M., Velayud-Han, R., Brooker, S.J., Lindsay, S.W., Integrating vector control across diseases (2015) BMC Med, 13 (1), p. 249. , http://dx.doi.org/10.1186/s12916-015-0491-4 | |
dcterms.bibliographicCitation | Hesterberg, T., Choi, N.H., Meier, L., Fraley, C., Least angle and 1 penalized regression: A review (2008) Stat. Surv., 2, pp. 61-93 | |
dcterms.bibliographicCitation | Hoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983 | |
dcterms.bibliographicCitation | Kucharz, E.J., Cebula-Byrska, I., Chikungunya fever (2012) Eur. J. Intern. Med., 23 (4), pp. 325-329. , http://www.sciencedirect.com/science/article/pii/S0953620512000337 | |
dcterms.bibliographicCitation | Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shep-Perd, M., Webster, S., An investigation of machine learning based prediction systems (2000) J. Syst. Softw., 53 (1), pp. 23-29. , http://www.sciencedirect.com/science/article/pii/S0164121200000054 | |
dcterms.bibliographicCitation | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Dubourg, V., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830 | |
dcterms.bibliographicCitation | Rasmussen, C.E., (2004) Gaussian Processes in Machine Learning, pp. 63-71. , http://dx.doi.org/10.1007/978-3-540-28650-94 | |
dcterms.bibliographicCitation | Rasmussen, C.E., Williams, C.K., Gaussian Processes for Machine Learning. The MIT Press (2006) Cambridge, 2 (3), p. 4 | |
dcterms.bibliographicCitation | Robert, C., Machine learning, a probabilistic perspective (2014) CHANCE, 27 (2), pp. 62-63. , http://dx.doi.org/10.1080/09332480.2014.914768 | |
dcterms.bibliographicCitation | Rodríguez, J., Correa, C., Predicción temporal de la epidemia de dengue en colombia: Dinámica probabilista de la epidemia (2009) Revista De Salud Pública, 11 (3), pp. 443-453. , http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S0124-00642009000300013&nrm=iso | |
dcterms.bibliographicCitation | Schölkopf, B., Smola, A.J., (2002) Learning with Kernels: Support Vector Machines, Reg-Ularization, Optimization, and Beyond, , MIT press, Cambridge | |
dcterms.bibliographicCitation | Silawan, T., Singhasivanon, P., Kaewkungwal, J., Nimmanitya, S., Suwonkerd, W., Temporal patterns and forecast of dengue infection in Northeastern Thailand. SE Asian J. Trop. Med (2008) Public Health, 39 (1), p. 90 | |
dcterms.bibliographicCitation | Simmons, C.P., Farrar, J.J., Van Vinh Chau, N., Wills, B., Dengue (2012) N. Engl. J. Med., 366 (15), pp. 1423-1432. , http://dx.doi.org/10.1056/NEJMra1110265, 22494122 | |
dcterms.bibliographicCitation | Smalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34 (26), pp. 2976-2981 | |
dcterms.bibliographicCitation | Solomon, T., Mallewa, M., Dengue and other emerging flaviviruses (2001) J. Infect., 42 (2), pp. 104-115. , http://www.sciencedirect.com/science/article/pii/S0163445301908023 | |
dcterms.bibliographicCitation | Sutton, R.S., Learning to predict by the methods of temporal differences (1988) Mach. Learn., 3 (1), pp. 9-44. , http://dx.doi.org/10.1007/BF00115009 | |
dcterms.bibliographicCitation | Vannice, K.S., Durbin, A., Hombach, J., Status of vaccine research and development of vaccines for dengue (2016) Vaccine, 34 (26), pp. 2934-2938 | |
dcterms.bibliographicCitation | Walker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: History, isolation, availability and application to assess the threat of arbovi-ral transmission in the united kingdom (2014) Parasites Vectors, 7 (1), p. 382. , http://dx.doi.org/10.1186/1756-3305-7-382 | |
dcterms.bibliographicCitation | Williams, C.K., Rasmussen, C.E., Gaussian processes for regression (1996) Advances in Neural Information Processing Systems, pp. 514-520 | |
dcterms.bibliographicCitation | (2009) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, , http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1 | |
dcterms.bibliographicCitation | (2009) World Health Organization - Dengue and Severe Dengue, , http://www.who.int/mediacentre/factsheets/fs117/en/, Accessed 25 March 2017 | |
dcterms.bibliographicCitation | (2017) World Health Organization - Chikungunya (, , http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 25 March 2017 | |
dcterms.bibliographicCitation | Yusof, Y., Mustaffa, Z., Dengue outbreak prediction: A least squares support vector machines approach (2011) Int. J. Comput. Theory Eng., 3 (4), p. 489 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 12th Colombian Conference on Computing, CCC 2017 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-319-66562-7_34 | |
dc.subject.keywords | Chikungunya | |
dc.subject.keywords | Dengue | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Gaussian processes | |
dc.subject.keywords | Kernel ridge regression | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Diseases | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Gaussian distribution | |
dc.subject.keywords | Gaussian noise (electronic) | |
dc.subject.keywords | Health | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Public health | |
dc.subject.keywords | Regression analysis | |
dc.subject.keywords | Chikungunya | |
dc.subject.keywords | Dengue | |
dc.subject.keywords | Gaussian processes | |
dc.subject.keywords | Kernel ridge regressions | |
dc.subject.keywords | Machine learning models | |
dc.subject.keywords | Mean absolute percentage error | |
dc.subject.keywords | Research and development | |
dc.subject.keywords | Time series forecasting | |
dc.subject.keywords | Learning algorithms | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | Acknowledgments. The authors wish to thank the Universidad Tecnológica de Bolívar (Colombia) and Universidad Autónoma de México for their financial support (Grant: TRFCI-1P2016, D. M-G: Programa de Becas Posdoctorales en la UNAM 2016). | |
dc.relation.conferencedate | 19 September 2017 through 22 September 2017 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 55782426500 | |
dc.identifier.orcid | 55670024000 | |
dc.identifier.orcid | 57193857478 | |
dc.identifier.orcid | 57193855099 | |
dc.identifier.orcid | 57195570557 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.