Mostrar el registro sencillo del ítem

dc.contributor.editorSolano A.
dc.contributor.editorOrdonez H.
dc.creatorCaicedo-Torres W.
dc.creatorMontes-Grajales D.
dc.creatorMiranda-Castro W.
dc.creatorFennix Agudelo, Mary Andrea
dc.creatorAgudelo-Herrera N.
dc.date.accessioned2020-03-26T16:32:40Z
dc.date.available2020-03-26T16:32:40Z
dc.date.issued2017
dc.identifier.citationCommunications in Computer and Information Science; Vol. 735, pp. 472-484
dc.identifier.isbn9783319665610
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8960
dc.description.abstractDengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017.eng
dc.description.sponsorshipUniversidad Autónoma de Bucaramanga: TRFCI-1P2016, UNAM 2016
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b
dc.titleKernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
dcterms.bibliographicCitation(2017), https://github.com/williamcaicedo/morbidityPrediction, Accessed 25 Mar 2017
dcterms.bibliographicCitationAlthouse, B.M., Ng, Y.Y., Cummings, D.A.T., Prediction of dengue incidence using search query surveillance (2011) Plos Negl. Trop. Dis, 5 (8), pp. 1-7. , http://dx.doi.org/10.1371
dcterms.bibliographicCitationCaicedo-Torres, W., Payares, F., A machine learning model for occupancy rates and demand forecasting in the hospitality industry (2016) IBERAMIA 2016. LNCS, 10022. , Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, Cham
dcterms.bibliographicCitationCawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression (2002) Neural Process. Lett, 16 (3), pp. 293-302. , http://dx.doi.org/10.1023/A
dcterms.bibliographicCitationChu, W., Ghahramani, Z., Gaussian processes for ordinal regression (2005) J. Mach. Learn. Res, 6, pp. 1019-1041
dcterms.bibliographicCitationCortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018
dcterms.bibliographicCitationCruz, J.A., Wishart, D.S., Applications of machine learning in cancer prediction and prognosis (2006) Cancer Inform, 2, pp. 59-77. , https://era.library.ualberta.ca/files/1v53jx76c/CancerInformatics2200759.pdf
dcterms.bibliographicCitationEastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C., Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in colombia (2014) Am. J. Trop. Med. Hyg., 91 (3), pp. 598-610
dcterms.bibliographicCitationEscobar, L.E., Qiao, H., Peterson, A.T., Forecasting chikungunya spread in the Americas via data-driven empirical approaches (2016) Parasites Vectors, 9 (1), p. 112. , http://dx.doi.org/10.1186/s13071-016-1403-y
dcterms.bibliographicCitationFlasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): A model comparison study (2016) Plos Med, 13 (11)
dcterms.bibliographicCitationGilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , http://dx.doi.org/10.1002/9781119244592, Wiley, Hoboken
dcterms.bibliographicCitationGolding, N., Wilson, A.L., Moyes, C.L., Cano, J., Pigott, D.M., Velayud-Han, R., Brooker, S.J., Lindsay, S.W., Integrating vector control across diseases (2015) BMC Med, 13 (1), p. 249. , http://dx.doi.org/10.1186/s12916-015-0491-4
dcterms.bibliographicCitationHesterberg, T., Choi, N.H., Meier, L., Fraley, C., Least angle and 1 penalized regression: A review (2008) Stat. Surv., 2, pp. 61-93
dcterms.bibliographicCitationHoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983
dcterms.bibliographicCitationKucharz, E.J., Cebula-Byrska, I., Chikungunya fever (2012) Eur. J. Intern. Med., 23 (4), pp. 325-329. , http://www.sciencedirect.com/science/article/pii/S0953620512000337
dcterms.bibliographicCitationMair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shep-Perd, M., Webster, S., An investigation of machine learning based prediction systems (2000) J. Syst. Softw., 53 (1), pp. 23-29. , http://www.sciencedirect.com/science/article/pii/S0164121200000054
dcterms.bibliographicCitationPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Dubourg, V., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830
dcterms.bibliographicCitationRasmussen, C.E., (2004) Gaussian Processes in Machine Learning, pp. 63-71. , http://dx.doi.org/10.1007/978-3-540-28650-94
dcterms.bibliographicCitationRasmussen, C.E., Williams, C.K., Gaussian Processes for Machine Learning. The MIT Press (2006) Cambridge, 2 (3), p. 4
dcterms.bibliographicCitationRobert, C., Machine learning, a probabilistic perspective (2014) CHANCE, 27 (2), pp. 62-63. , http://dx.doi.org/10.1080/09332480.2014.914768
dcterms.bibliographicCitationRodríguez, J., Correa, C., Predicción temporal de la epidemia de dengue en colombia: Dinámica probabilista de la epidemia (2009) Revista De Salud Pública, 11 (3), pp. 443-453. , http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S0124-00642009000300013&nrm=iso
dcterms.bibliographicCitationSchölkopf, B., Smola, A.J., (2002) Learning with Kernels: Support Vector Machines, Reg-Ularization, Optimization, and Beyond, , MIT press, Cambridge
dcterms.bibliographicCitationSilawan, T., Singhasivanon, P., Kaewkungwal, J., Nimmanitya, S., Suwonkerd, W., Temporal patterns and forecast of dengue infection in Northeastern Thailand. SE Asian J. Trop. Med (2008) Public Health, 39 (1), p. 90
dcterms.bibliographicCitationSimmons, C.P., Farrar, J.J., Van Vinh Chau, N., Wills, B., Dengue (2012) N. Engl. J. Med., 366 (15), pp. 1423-1432. , http://dx.doi.org/10.1056/NEJMra1110265, 22494122
dcterms.bibliographicCitationSmalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34 (26), pp. 2976-2981
dcterms.bibliographicCitationSolomon, T., Mallewa, M., Dengue and other emerging flaviviruses (2001) J. Infect., 42 (2), pp. 104-115. , http://www.sciencedirect.com/science/article/pii/S0163445301908023
dcterms.bibliographicCitationSutton, R.S., Learning to predict by the methods of temporal differences (1988) Mach. Learn., 3 (1), pp. 9-44. , http://dx.doi.org/10.1007/BF00115009
dcterms.bibliographicCitationVannice, K.S., Durbin, A., Hombach, J., Status of vaccine research and development of vaccines for dengue (2016) Vaccine, 34 (26), pp. 2934-2938
dcterms.bibliographicCitationWalker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: History, isolation, availability and application to assess the threat of arbovi-ral transmission in the united kingdom (2014) Parasites Vectors, 7 (1), p. 382. , http://dx.doi.org/10.1186/1756-3305-7-382
dcterms.bibliographicCitationWilliams, C.K., Rasmussen, C.E., Gaussian processes for regression (1996) Advances in Neural Information Processing Systems, pp. 514-520
dcterms.bibliographicCitation(2009) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, , http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1
dcterms.bibliographicCitation(2009) World Health Organization - Dengue and Severe Dengue, , http://www.who.int/mediacentre/factsheets/fs117/en/, Accessed 25 March 2017
dcterms.bibliographicCitation(2017) World Health Organization - Chikungunya (, , http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 25 March 2017
dcterms.bibliographicCitationYusof, Y., Mustaffa, Z., Dengue outbreak prediction: A least squares support vector machines approach (2011) Int. J. Comput. Theory Eng., 3 (4), p. 489
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event12th Colombian Conference on Computing, CCC 2017
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-66562-7_34
dc.subject.keywordsChikungunya
dc.subject.keywordsDengue
dc.subject.keywordsForecasting
dc.subject.keywordsGaussian processes
dc.subject.keywordsKernel ridge regression
dc.subject.keywordsMachine learning
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsDiseases
dc.subject.keywordsForecasting
dc.subject.keywordsGaussian distribution
dc.subject.keywordsGaussian noise (electronic)
dc.subject.keywordsHealth
dc.subject.keywordsLearning systems
dc.subject.keywordsPublic health
dc.subject.keywordsRegression analysis
dc.subject.keywordsChikungunya
dc.subject.keywordsDengue
dc.subject.keywordsGaussian processes
dc.subject.keywordsKernel ridge regressions
dc.subject.keywordsMachine learning models
dc.subject.keywordsMean absolute percentage error
dc.subject.keywordsResearch and development
dc.subject.keywordsTime series forecasting
dc.subject.keywordsLearning algorithms
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAcknowledgments. The authors wish to thank the Universidad Tecnológica de Bolívar (Colombia) and Universidad Autónoma de México for their financial support (Grant: TRFCI-1P2016, D. M-G: Programa de Becas Posdoctorales en la UNAM 2016).
dc.relation.conferencedate19 September 2017 through 22 September 2017
dc.type.spaConferencia
dc.identifier.orcid55782426500
dc.identifier.orcid55670024000
dc.identifier.orcid57193857478
dc.identifier.orcid57193855099
dc.identifier.orcid57195570557


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.