Mostrar el registro sencillo del ítem
Region growing segmentation of ultrasound images using gradients and local statistics
dc.contributor.editor | Duric N. | |
dc.contributor.editor | Heyde B. | |
dc.creator | Mercado-Aguirre I.M. | |
dc.creator | Patiño Vanegas, Alberto | |
dc.creator | Contreras Ortiz, Sonia Helena | |
dc.date.accessioned | 2020-03-26T16:32:39Z | |
dc.date.available | 2020-03-26T16:32:39Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10139 | |
dc.identifier.isbn | 9781510607231 | |
dc.identifier.issn | 16057422 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8952 | |
dc.description.abstract | This paper describes a region growing segmentation algorithm for medical ultrasound images. The algorithm starts with anisotropic diffusion filtering to reduce speckle noise without blurring the edges. Then, region growing is performed starting from a seed point, using a merging criterion that compares intensity gradients to the noise level inside the region. Finally, the boundaries are smoothed using morphological closing. The algorithm was evaluated with two simulated images and eleven phantom images and converged in 10 of them with accurate region delimitation. Preliminary results show that the proposed method can be used for ultrasound image segmentation and does not require previous knowledge of the anatomy of the structures. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. | eng |
dc.description.sponsorship | Alpinion Medical Systems;The Society of Photo-Optical Instrumentation Engineers (SPIE) | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | SPIE | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020784325&doi=10.1117%2f12.2254518&partnerID=40&md5=7e28cc8593ae2e4f109d27c383ae818d | |
dc.source | Scopus2-s2.0-85020784325 | |
dc.title | Region growing segmentation of ultrasound images using gradients and local statistics | |
dcterms.bibliographicCitation | Kass, M., Witkin, A., Terzopoulos, D., Snakes: Active contour models (1988) International Journal of Computer Vision, 1 (4), pp. 321-331 | |
dcterms.bibliographicCitation | Caselles, V., Kimmel, R., Sapiro, G., Geodesic active contours (1997) International Journal of Computer Vision, 22 (1), pp. 61-79 | |
dcterms.bibliographicCitation | Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J., Active shape models-their training and application (1995) Computer Vision and Image Understanding, 61 (1), pp. 38-59 | |
dcterms.bibliographicCitation | Zhan, Y., Shen, D., Deformable segmentation of 3-d ultrasound prostate images using statistical texture matching method (2006) Medical Imaging, IEEE Transactions on, 25 (3), pp. 256-272 | |
dcterms.bibliographicCitation | Wang, W., Qin, J., Chui, Y.-P., Heng, P.-A., A multiresolution framework for ultrasound image segmentation by combinative active contours (2013) Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 1144-1147. , IEEE | |
dcterms.bibliographicCitation | Wang, W., Zhu, L., Qin, J., Chui, Y.-P., Li, B.N., Heng, P.-A., Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion (2014) Optics and Lasers in Engineering, 54, pp. 105-116 | |
dcterms.bibliographicCitation | Gupta, D., Anand, R., Tyagi, B., A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images (2015) Biomedical Signal Processing and Control, 16, pp. 98-112 | |
dcterms.bibliographicCitation | Yu, Y., Cheng, J., Li, J., Chen, W., Chiu, B., Automatic prostate segmentation from transrectal ultrasound images (2014) Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE, pp. 117-120. , IEEE | |
dcterms.bibliographicCitation | Thakur, A., Anand, R.S., A local statistics based region growing segmentation method for ultrasound medical images (2004) International Journal of Signal Processing, 1 (2), pp. 141-146 | |
dcterms.bibliographicCitation | Lee, L.-K., Liew, S.-C., Breast ultrasound automated roi segmentation with region growing (2015) Software Engineering and Computer Systems (ICSECS), 2015 4th International Conference on, pp. 177-182. , IEEE | |
dcterms.bibliographicCitation | Jensen, J.A., Field: A program for simulating ultrasound systems (1996) Medical and Biological Engineering and Computing, 34, pp. 351-352 | |
dcterms.bibliographicCitation | Jensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (2), pp. 262-267 | |
dcterms.bibliographicCitation | Giraldo-Guzman, J., Porto-Solano, O., Cadena-Bonfanti, A., Contreras-Ortiz, S.H., Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering (2015) Tenth International Symposium on Medical Information Processing and Analysis, 92871F-92871F, International Society for Optics and Photonics | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | Medical Imaging 2017: Ultrasonic Imaging and Tomography | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1117/12.2254518 | |
dc.subject.keywords | Anisotropic diffusion filtering | |
dc.subject.keywords | Medical ultrasound | |
dc.subject.keywords | Region growing segmentation | |
dc.subject.keywords | Anisotropy | |
dc.subject.keywords | Imaging systems | |
dc.subject.keywords | Medical imaging | |
dc.subject.keywords | Optical anisotropy | |
dc.subject.keywords | Tomography | |
dc.subject.keywords | Ultrasonic imaging | |
dc.subject.keywords | Anisotropic diffusion filtering | |
dc.subject.keywords | Intensity gradients | |
dc.subject.keywords | Medical ultrasound | |
dc.subject.keywords | Medical ultrasound images | |
dc.subject.keywords | Morphological closing | |
dc.subject.keywords | Region growing | |
dc.subject.keywords | Segmentation algorithms | |
dc.subject.keywords | Ultrasound image segmentation | |
dc.subject.keywords | Image segmentation | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 15 February 2017 through 16 February 2017 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57190165939 | |
dc.identifier.orcid | 57190688459 | |
dc.identifier.orcid | 57210822856 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.