Mostrar el registro sencillo del ítem

dc.creatorArias Amaya, Fabián
dc.creatorMalakhaltsev M.
dc.date.accessioned2020-03-26T16:32:37Z
dc.date.available2020-03-26T16:32:37Z
dc.date.issued2017
dc.identifier.citationJournal of Geometry and Physics; Vol. 121, pp. 108-122
dc.identifier.issn03930440
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8926
dc.description.abstractFor a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) is the index of V at z∈Z(V), and K is the curvature of g. We consider a locally trivial fiber bundle π:E→M over a compact oriented two-dimensional manifold M, and a section s of this bundle defined over M∖Σ, where Σ is a discrete subset of M called the set of singularities of the section. We assume that the behavior of the section s at the singularities is controlled in the following way: s(M∖Σ) coincides with the interior part of a surface S⊂E with boundary ∂S, and ∂S is π−1(Σ). For such sections s we define an index of s at a point of Σ, which generalizes in the natural way the index of zero of a vector field, and then prove that the sum of these indices at the points of Σ can be expressed as an integral over S of a 2-form constructed via a connection in E, thus we obtain a generalization of the GBHP formula. Also we consider branched sections with singularities, define an index of a branched section at a singular point, and find a generalization of the GBHP formula for the branched sections. © 2017eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026853352&doi=10.1016%2fj.geomphys.2017.07.011&partnerID=40&md5=6515fde524ff8a0f67f24afa94c152ab
dc.titleA generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. II (1996), p. xvi+468. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1969 original, a Wiley-Interscience Publication
dcterms.bibliographicCitationBott, R., Tu, L.W., Differential Forms in Algebraic Topology (1982), Springer New York
dcterms.bibliographicCitationBruce, J.W., Tari, F., On binary differential equations (1995) Nonlinearity, 8 (2), pp. 255-271
dcterms.bibliographicCitationBruce, J.W., Tari, F., Implicit differential equations from the singularity point of view (1996) Banach Center Publ., 33, pp. 23-38
dcterms.bibliographicCitationFukui, T., Nuño-Ballesteros, J.J., Isolated singularities of binary differential equations of degree $n$ (2012) Publ. Mat., 56, pp. 65-89
dcterms.bibliographicCitationChern, S.-S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds (1944) Ann. Mat., 45 (4), pp. 747-752
dcterms.bibliographicCitationArteaga B., J.R., Malakhaltsev, M., Trejos Serna, A.H., Isometry group and geodesics of the Wagner lift of a Riemannian metric on two-dimensional manifold (2012) Lobachevskii J. Math., 33 (4), pp. 293-311
dcterms.bibliographicCitationAgafonov, S.I., On implicit ODEs with hexagonal web of solutions (2009) J. Geom. Anal., 19, pp. 481-508
dcterms.bibliographicCitationArias, F.A., Arteaga B., J.R., Malakhaltsev, M.A., 3-webs with singularities (2016) Lobachevskii J. Math., 37 (1), pp. 1-20
dcterms.bibliographicCitationArtega B., J.R., Malakhaltsev, M.A., Symmetries of sub-Riemannian surfaces (2011) J. Geom. Phys., 61 (1), pp. 290-308
dcterms.bibliographicCitationKushner, A., Classification of mixed type Monge–Ampere equations (1994) Geometry in Partial Differential Equations, pp. 173-188. , World Scientific Pub Co Pte Lt
dcterms.bibliographicCitationGarcia, R., Sotomayor, J., Differential Equations of Classical Geometry, A Qualitative Theory (2009), IMPA
dcterms.bibliographicCitationKolár̆, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry (1993), p. vi + 434. , Berlin: Springer-Verlag
dcterms.bibliographicCitationKamber, F.W., Tondeur, P., Foliated Bundles and Characteristic Classes (1975), Springer Berlin Heidelberg
dcterms.bibliographicCitationBiswas, I., Flat partial connections on a three manifold equipped with a codimension one foliation (2000) Geom. Dedicata, 80 (1-3), pp. 65-72
dcterms.bibliographicCitationMichor, P., Topics in Differential Geometry (2008), Amer. Math. Soc
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I (1996), p. xii+329. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1963 original, a Wiley-Interscience Publication
dcterms.bibliographicCitationSharpe, R.W., Differential Geometry (2000), Springer
dcterms.bibliographicCitationDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part II. The Geometry and Topology of Manifolds (1985), Springer-Verlag
dcterms.bibliographicCitationDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part III. Introduction to Homology Theory (1990), Springer-Verlag
dcterms.bibliographicCitationSpivak, M., A Comprehensive Introduction to Differential Geometry. Vol. 1–5. Third ed. with corrections, Vol. 3 (1999), p. ix + 314. , third ed. Houston, TX: Publish or Perish
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.geomphys.2017.07.011
dc.subject.keywordsBinary differential equation
dc.subject.keywordsBranched section
dc.subject.keywordsG-structure with singularities
dc.subject.keywordsIndex of singular point
dc.subject.keywordsSingularity of section
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis investigation was supported by Vicerrector?a de Investigaciones and the Faculty of Sciences of Universidad de los Andes (Grant FAPA).
dc.type.spaArtículo
dc.identifier.orcid57195299684
dc.identifier.orcid6507151476


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.