Mostrar el registro sencillo del ítem

dc.contributor.editorFerme E.
dc.contributor.editorSimari G.R.
dc.contributor.editorGutierrez Segura F.
dc.contributor.editorRodriguez Melquiades J.A.
dc.creatorCaicedo-Torres W.
dc.creatorPaternina-Caicedo Á.
dc.creatorPinzón-Redondo H.
dc.creatorGutiérrez J.
dc.date.accessioned2020-03-26T16:32:36Z
dc.date.available2020-03-26T16:32:36Z
dc.date.issued2018
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192
dc.identifier.isbn9783030039271
dc.identifier.issn03029743
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8921
dc.description.abstractDengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa29
dc.titleDifferential diagnosis of dengue and chikungunya in colombian children using machine learning
dcterms.bibliographicCitationBhatt, S., The global distribution and burden of dengue (2013) Nature, 496 (7446), pp. 504-507. , https://doi.org/10.1038/nature12060,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/
dcterms.bibliographicCitationBreiman, L., Friedman, J., Olshen, R., Stone, C., (1984) Classification and Regression Trees, , Wadsworth and Brooks, Monterey
dcterms.bibliographicCitationCaglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L., Chikungunya virus infection: An overview (2013) New Microbiologica, 36 (3), pp. 211-227. , http://www.newmicrobiologica.org/PUB/allegatipdf/2013/3/211.pdf
dcterms.bibliographicCitationCaicedo, W., Quintana, M., Pinzón, H., Differential diagnosis of hemorrhagic fevers using ARTMAP (2012) IBERAMIA 2012. LNCS (LNAI), 7637, pp. 221-230. , https://doi.org/10.1007/978-3-642-34654-523, Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.), Springer, Heidelberg
dcterms.bibliographicCitationCaicedo-Torres, W., Paternina, Á., Pinzón, H., Machine learning models for early dengue severity prediction (2016) IBERAMIA 2016. LNCS (LNAI), 10022, pp. 247-258. , https://doi.org/10.1007/978-3-319-47955-221, Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, Cham
dcterms.bibliographicCitationCortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , https://doi.org/10.1007/BF00994018
dcterms.bibliographicCitationFaisal, T., Taib, M.N., Ibrahim, F., Neural network diagnostic system for dengue patients risk classification (2012) J. Med. Syst., 36 (2), pp. 661-676. , https://doi.org/10.1007/s10916-010-9532-x
dcterms.bibliographicCitationShameem Fathima, A., Manimeglai, D., Analysis of significant factors for dengue infection prognosis using the random forest classifier (2015) Int. J. Adv. Comput. Sci. Appl. (IJACSA), 6 (2). , https://doi.org/10.14569/IJACSA.2015.060235
dcterms.bibliographicCitationFullerton, L.M., Dickin, S.K., Schuster-Wallace, C.J., (2014) Mapping Global Vulnerability to Dengue Using the Water Associated Disease Index, , Technical report, United Nations University
dcterms.bibliographicCitationGoodfellow, I., Bengio, Y., Courville, A., (2016) Deep Learning, , http://www.deeplearningbook.org, MIT Press, Cambridge
dcterms.bibliographicCitationKeerthi, S.S., Lin, C.J., Asymptotic behaviors of support vector machines with Gaussian kernel (2003) Neural Comput, 15 (7), pp. 1667-1689. , https://doi.org/10.1162/089976603321891855
dcterms.bibliographicCitationKhan, M.I.H., Factors predicting severe dengue in patients with dengue fever (2013) Mediterr. J. Hematol. Infect. Diseases, 5 (1)
dcterms.bibliographicCitationLaoprasopwattana, K., Kaewjungwad, L., Jarumanokul, R., Geater, A., Differential diagnosis of chikungunya, dengue viral infection and other acute febrile illnesses in children (2012) Pediatr. Infect. Disease J., 31 (5). , http://journals.lww.com/pidj/Fulltext/2012/05000/DifferentialDiagnosisofChikungunya,Dengue.8.aspx
dcterms.bibliographicCitationLee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9), pp. 1-9. , https://doi.org/10.1371/journal.pntd.0001786
dcterms.bibliographicCitationLee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9). , https://doi.org/10.1371/journal.pntd.0001786,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459852/
dcterms.bibliographicCitationMardekian, S.K., Roberts, A.L., Diagnostic options and challenges for dengue and chikungunya viruses (2015) Biomed. Res. Int., 2015. , https://doi.org/10.1155/2015/834371.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609775/
dcterms.bibliographicCitationMcCullagh, P., Nelder, J., Generalized Linear Models (1989) Chapman & Hall/Crc Monographs on Statistics & Applied Probability, , https://books.google.co.uk/books?id=h9kFH2FfBkC, 2nd edn. Taylor & Francis, Boa Raton (2014), http://www.paho.org/hq/index.php?option=comtopics&view=readall&cid=5932&Itemid=40931&lang=en, Accessed 29 Feb 2016
dcterms.bibliographicCitationPaternina-Caicedo, A., Features of dengue and chikungunya infections of Colombian children under 24 months of age admitted to the emergency department (2017) J. Trop. Pediatr., , https://doi.org/10.1093/tropej/fmx024
dcterms.bibliographicCitationPedregosa, F., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res., 12, pp. 2825-2830
dcterms.bibliographicCitationPotts, J.A., Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators (2010) Plos Negl. Trop. Dis., 4 (8) (2015), http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 29 Feb 2016
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event16th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-03928-8_15
dc.subject.keywordsCART
dc.subject.keywordsChikungunya
dc.subject.keywordsDecision tree
dc.subject.keywordsDengue
dc.subject.keywordsLogistic regression
dc.subject.keywordsSupport vector machine
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsDecision trees
dc.subject.keywordsLearning algorithms
dc.subject.keywordsPediatrics
dc.subject.keywordsRegression analysis
dc.subject.keywordsStatistical tests
dc.subject.keywordsSupport vector machines
dc.subject.keywordsCART
dc.subject.keywordsChikungunya
dc.subject.keywordsDecision tree classifiers
dc.subject.keywordsDengue
dc.subject.keywordsLogistic Regression modeling
dc.subject.keywordsLogistic regressions
dc.subject.keywordsReceiver operating characteristics
dc.subject.keywordsStratified random sampling
dc.subject.keywordsDiagnosis
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate13 November 2018 through 16 November 2018
dc.type.spaConferencia
dc.identifier.orcid55782426500
dc.identifier.orcid35769665400
dc.identifier.orcid56375235000
dc.identifier.orcid7401653270


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.