Power Flow Analysis in DC Grids: Two Alternative Numerical Methods

Date
2019
Author
Montoya O.D.
Garrido V.M.
Gil-Gonzalez W.
Grisales-Norena L.F.
University
Universidad Tecnológica de Bolívar
Metadata
Show full item record
Abstract
This express brief proposes two new iterative approaches for solving the power flow problem in direct current networks as efficient alternatives to the classical Gauss-Seidel and Newton-Raphson methods. The first approach works with the set of nonlinear equations by rearranging them into a conventional fixed point form, generating a successive approximation methodology. The second approach is based on Taylors series expansion method by using a set of decoupling equations to linearize the problem around the desired operating point; these linearized equations are recursively solved until reach the solution of the power flow problem with minimum error. These two approaches are comparable to the classical Gauss-Seidel method and the classical Newton-Raphson method, respectively. Simulation results show that the proposed approaches have a better performance in terms of solution precision and computational requirements. All the simulations were conducted via MATLAB software by using its programming interface. © 2004-2012 IEEE.
Manuscript received October 9, 2018; revised December 10, 2018; accepted January 5, 2019. Date of publication January 9, 2019; date of current version November 1, 2019. This work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Universidad Nacional de Colombia, in part by the Instituto Tecnológico Metropolitano under Project P17211, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020. This brief was recommended by Associate Editor H. H.-C. Iu. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya and V. M. Garrido are with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: omontoya@utb.edu.co; vgarrido@utb.edu.co).
Compartir:
Compatible para recolección con:


Impacto