Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGrisales-Noreña L.F.
dc.date.accessioned2020-03-26T16:32:36Z
dc.date.available2020-03-26T16:32:36Z
dc.date.issued2018
dc.identifier.citationWSEAS Transactions on Power Systems; Vol. 13, pp. 335-346
dc.identifier.issn17905060
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8915
dc.description.abstractThis paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix inversions. This approach is important since it can be easily implementable over any simple programming toolbox finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver. © 2018, World Scientific and Engineering Academy and Society. All rights reserved.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWorld Scientific and Engineering Academy and Society
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062268252&partnerID=40&md5=46edbfab70f6fb6b8d2d51e4c46870ae
dc.titleOptimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
dcterms.bibliographicCitationSlough, T., Urpelainen, J., Yang, J., Light for all? Evaluating Brazils rural electrification progress 2000 2010 (2015) Energy Policy, 86, pp. 315-327. , http://www.sciencedirect.com/science/article/pii/S0301421515300124
dcterms.bibliographicCitationThomas, D.R., Urpelainen, J., Early electrification and the quality of service: Evidence from rural india (2018) Energy for Sustainable Development, 44, pp. 11-20. , http://www.sciencedirect.com/science/article/pii/S0973082617308700
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , May
dcterms.bibliographicCitationMontoya, O.D., Garcs, A., Espinosa-Prez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) Journal of Energy Storage, 16, pp. 259-268. , http://www.sciencedirect.com/science/article/pii/S2352152X17304644, [Online]. Available
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahrami-Rad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationChapter 2-Uhv Ac Grid and System Stability, pp. 21-50. , http://www.sciencedirect.com/science/article/pii/B9780128051931000021, in UHV Transmission Technology. Oxford: Academic Press, 2018,, [On-line]
dcterms.bibliographicCitationAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (2018) International Journal of Electrical Power & Energy Systems, 99, pp. 331-343. , http://www.sciencedirect.com/science/article/pii/S0142061517330272, [Online]
dcterms.bibliographicCitationGarces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Transactions on Power Systems, 31 (1), pp. 827-828. , Jan
dcterms.bibliographicCitationAbdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and micro-grids (2017) Renewable and Sustainable Energy Reviews, 71, pp. 742-766. , http://www.sciencedirect.com/science/article/pii/S1364032116311583
dcterms.bibliographicCitationMurty, P., Chapter 10-power flow studies (2017) Power Systems Analysis, pp. 205-276. , http://www.sciencedirect.com/science/article/pii/B9780081011119000100, (Second Edition), second edition ed., P. Murty, Ed. Boston: Butterworth-Heinemann
dcterms.bibliographicCitationMontoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruíz, A., Optimal power flow for radial and mesh grids using semidefinite program-ming (2017) Tecno Lógicas, 20 (40), pp. 29-42
dcterms.bibliographicCitationGandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renewable Energy, 111, pp. 275-283. , Supplement C
dcterms.bibliographicCitationGarces, A., On Convergence of Newtons Method in Power Flow Study for DC Micro-grids (2018) IEEE Transactions on Power Systems, p. 1
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. , Supplement C
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res, 163, pp. 375-381
dcterms.bibliographicCitationBeagam, K.S.H., Jayashree, R., Khan, M.A., A new dc power flow model for q flow analysis for use in reactive power market (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 721-729. , http://www.sciencedirect.com/science/article/pii/S2215098616306152
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering dc/dc converters (2016) 2016 IEEE 25Th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217. , June
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Opti-mal Power Flow in Stand-alone DC Microgrids (2018) IEEE Transactions on Power Systems, p. 1
dcterms.bibliographicCitationBoyd, S., Vandenberghe, L., (2004) Convex Optimization, , Cambridge university press
dcterms.bibliographicCitationNesterov, Y., (2018) Lectures on Convex Optimization, Ser. Springer Optimization and Its Applications, , https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing, [On-line]. Available
dcterms.bibliographicCitationBenedito, E., Del Puerto-Flores, D., Dria-Cerezo, A., Scherpen, J.M., Optimal Power Flow for resistive DC Networks: A Port-Hamiltonian approach (2017) Ifac-Papersonline, 50 (1), pp. 25-30. , http://www.sciencedirect.com/science/article/pii/S2405896317300162, 20th IFAC World Congress. [Online]
dcterms.bibliographicCitationAlexander, C., Sadiku, M., (2006) Fundamentals of Electric Circuits, , https://books.google.com.co/books?id=dm6VPwAACAAJ, McGraw-Hill Higher Education
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Gri, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), pp. 114-121
dcterms.bibliographicCitationShuai, Z., Fang, J., Ning, F., Shen, Z.J., Hierarchical structure and bus voltage control of dc microgrid (2018) Renewable and Sustainable Energy Reviews, 82, pp. 3670-3682. , http://www.sciencedirect.com/science/article/pii/S1364032117314788
dcterms.bibliographicCitationDepersis, C., Weitenberg, E.R., Drfler, F., A power consensus algorithm for dc microgrids (2018) Automatica, 89, pp. 364-375. , http://www.sciencedirect.com/science/article/pii/S0005109817306131, OnlineAvailable
dcterms.bibliographicCitationLiu, Z., Su, M., Sun, Y., Han, H., Hou, X., Guerrero, J.M., Stability analysis of dc microgrids with constant power load under distributed control methods (2018) Automatica, 90, pp. 62-72. , http://www.sciencedirect.com/science/article/pii/S0005109817306386, [On-line]. Available
dcterms.bibliographicCitationShivam, Dahiya, R., Stability analysis of islanded DC microgrid for the proposed distributed control strategy with constant power loads (2018) Computers & Electrical Engineering, , http://www.sciencedirect.com/science/article/pii/S0045790617309606
dcterms.bibliographicCitationKhorasani, P.G., Joorabian, M., Seifossadat, S.G., Smart grid realization with introducing unified power quality conditioner integrated with dc microgrid (2017) Electric Power Systems Research, 151, pp. 68-85. , http://www.sciencedirect.com/science/article/pii/S0378779617302122, [Online]
dcterms.bibliographicCitationWu, H., Liu, X., Ding, M., Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm (2014) International Journal of Electrical Power & Energy Systems, 63, pp. 336-346. , http://www.sciencedirect.com/science/article/pii/S0142061514003482, [On-line]. Available
dcterms.bibliographicCitationPhurailatpam, C., Rajpurohit, B.S., Wang, L., Planning and optimization of autonomous DC microgrids for rural and urban applications in India (2018) Renewable and Sustainable Energy Reviews, 82, pp. 194-204. , http://www.sciencedirect.com/science/article/pii/S1364032117312509, [Online]. Available
dcterms.bibliographicCitationHamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustainable Cities and Society, 27, pp. 129-136. , http://www.sciencedirect.com/science/article/pii/S2210670716300294, [Online]. Available
dcterms.bibliographicCitationBhattacharjee, V., Khan, I., A non-linear convex cost model for economic dispatch in microgrids (2018) Applied Energy, 222, pp. 637-648. , http://www.sciencedirect.com/science/article/pii/S0306261918305439, [Online]
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal Location and Operation of Energy Storage Devices in Microgrids in Presence of Distributed Generation (In Span-ish) Revista CINTEX, 22 (1), pp. 97-117. , jun 2017
dcterms.bibliographicCitationYue, J., Hu, Z., Li, C., Vasquez, J.C., Guerrero, J.M., Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System (2017) Energies, 10 (7). , http://www.mdpi.com/1996-1073/10/7/916, [Online]. Available
dcterms.bibliographicCitationBhoskar, M.T., Kulkarni, M.O.K., Kulkarni, M.N.K., Patekar, M.S.L., Kakandikar, G., Nandedkar, V., Genetic algorithm and its applications to mechanical engineering: A review Materials Today: Proceedings, Vol. 2, No. 4, Pp. 2624 – 2630, 2015, 4Th International Conference on Materials Processing and Characterzation, , http://www.sciencedirect.com/science/article/pii/S2214785315004642, [Online]. Available
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in dc-mgs with cpls via an sdp model (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, p. 1
dcterms.bibliographicCitationMachado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Transactions on Circuits and Systems I: Regular Papers, 64 (10), pp. 2772-2782. , Oct
dcterms.bibliographicCitationGallego, R.A., Monticelli, A., Romero, R., Transmission system expansion planning by an extended genetic algorithm (1998) IEE Proceedings-Generation, Transmission and Distribution, 145 (3), pp. 329-335. , May
dcterms.bibliographicCitationSheng, W., Liu, K.Y., Liu, Y., Meng, X., Li, Y., Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm ii (2015) IEEE Transactions on Power Delivery, 30 (2), pp. 569-578. , April
dcterms.bibliographicCitationEsmaelian, M., Tavana, M., Santos-Arteaga, F.J., Vali, M., A novel genetic algorithm based method for solving continuous nonlinear optimization problems through subdividing and labeling (2018) Measurement, 115, pp. 27-38. , http://www.sciencedirect.com/science/article/pii/S0263224117306061, [Online]
dcterms.bibliographicCitationArqub, O.A., Abo-Hammour, Z., Nu-merical solution of systems of second-order boundary value problems using continuous genetic algorithm (2014) Information Sciences, 279, pp. 396-415. , http://www.sciencedirect.com/science/article/pii/S0020025514004253, [Online]. Available
dcterms.bibliographicCitationTodorovski, M., Rajicic, D., An initialization procedure in solving optimal power flow by genetic algorithm (2006) IEEE Transactions on Power Systems, 21 (2), pp. 480-487. , May
dcterms.bibliographicCitationTodescato, M., DC power flow feasibility: Positive vs. negative loads (2017) 2017 IEEE 56Th Annual Conference on Decision and Control (CDC), pp. 3258-3263. , Dec
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.subject.keywordsDirect current power grids
dc.subject.keywordsDistributed generation
dc.subject.keywordsGauss-Seidel method
dc.subject.keywordsGenetic algorithm
dc.subject.keywordsHybrid master-slave optimization strategy
dc.subject.keywordsOptimal power flow problem
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid55791991200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.