Mostrar el registro sencillo del ítem

dc.contributor.editorGruca A.
dc.contributor.editorCzachorski T.
dc.contributor.editorHarezlak K.
dc.contributor.editorKozielski S.
dc.contributor.editorPiotrowska A.
dc.contributor.editorCzachorski T.
dc.creatorKotas, Marian
dc.creatorLeski J.
dc.creatorMoroń T.
dc.creatorGuzmán J.G.
dc.date.accessioned2020-03-26T16:32:35Z
dc.date.available2020-03-26T16:32:35Z
dc.date.issued2018
dc.identifier.citationAdvances in Intelligent Systems and Computing; Vol. 659, pp. 207-216
dc.identifier.isbn9783319677910
dc.identifier.issn21945357
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8913
dc.description.abstractWe have developed a procedure for hierarchical agglomerative clustering of time series data. To measure the dissimilarity between these data, we use classically the Euclidean distance or we apply the costs of the series nonlinear alignment (time warping). In the latter approach, we use the classical costs or the modified ones. The modification consists in matching short signal segments instead of single signal samples. The procedure is applied to a few datasets from the internet archive of time series. In this archive, the series of the same classes possess visual similarity but their time evolution is often different (the characteristic waves have different location within the individual signals). Therefore the use of the Euclidean distance as the dissimilarity measure gives poor results. After time warping, the nonlinearly aligned signals match each other better, and therefore the total cost of the alignment appears to be a much more effective measure. It results in higher values of the Purity index used to evaluate the results of clustering. In most cases, the proposed modification of the alignment costs definition leads to still higher values of the index. © 2018, Springer International Publishing AG.eng
dc.description.sponsorshipMinistry of Higher Education: BK-220/RAu-3/2016, BKM-508/RAu-3/2016, POIG.02.03.01-24-099/
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85030788309&doi=10.1007%2f978-3-319-67792-7_21&partnerID=40&md5=e468edc333362f58b3c61973e1e7dfff
dc.titleHierarchical agglomerative clustering of time-warped series
dcterms.bibliographicCitationBellman, R.E., Dreyfus, S.E., (2015) Applied Dynamic Programming, , Princeton University Press, Princeton
dcterms.bibliographicCitationBien, J., Tibshirani, R., Hierarchical clustering with prototypes via minimax linkage (2011) J. Am. Stat. Assoc., 106 (495), pp. 1075-1084
dcterms.bibliographicCitationChen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., (2015) The UCR Time Series Classification Archive, , http://www.cs.ucr.edu/
dcterms.bibliographicCitationEveritt, B.S., Landau, S., Leese, M., Stahl, D., (2011) Hierarchical Clustering, pp. 71-110. , Wiley, Hoboken
dcterms.bibliographicCitationGupta, L., Molfese, D.L., Tammana, R., Simos, P.G., Nonlinear alignment and averaging for estimating the evoked potential (1996) IEEE Trans. Biomed. Eng., 43 (4), pp. 348-356
dcterms.bibliographicCitationKeogh, E., Exact indexing of dynamic time warping (2002) VLDB 2002, pp. 406-417
dcterms.bibliographicCitationKeogh, E.J., Pazzani, M.J., Scaling up dynamic time warping for datamining applications (2000) KDD 2000, pp. 285-289
dcterms.bibliographicCitationKotas, M., Projective filtering of time warped ECG beats (2008) Comput. Biol. Med., 38 (1), pp. 127-137
dcterms.bibliographicCitationKotas, M., Robust projective filtering of time-warped ECG beats (2008) Comput. Methods Programs Biomed., 92 (2), pp. 161-172
dcterms.bibliographicCitationKotas, M., Pander, T., Leski, J.M., Averaging of nonlinearly aligned signal cycles for noise suppression (2015) Biomed. Sig. Process. Control, 21, pp. 157-168
dcterms.bibliographicCitationLeski, J.M., Kotas, M., Hierarchical clustering with planar segments as prototypes (2015) Pattern Recogn. Lett., 54, pp. 1-10
dcterms.bibliographicCitationMoroń, T., Averaging of time-warped ECG signals for QT interval measurement (2016) Information Technologies in Medicine, 471, pp. 291-302. , Piȩtka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.), Springer International Publishing, Switzerland
dcterms.bibliographicCitationNiennattrakul, V., Ratanamahatana, C.A., On clustering multimedia time series data using k-means and dynamic time warping (2007) MUE 2007, pp. 733-738
dcterms.bibliographicCitationPetitjean, F., Ketterlin, A., Gançarski, P., A global averaging method for dynamic time warping, with applications to clustering (2011) Pattern Recogn, 44 (3), pp. 678-693
dcterms.bibliographicCitationRakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E., Searching and mining trillions of time series subsequences under dynamic time warping (2012) KDD 2012, pp. 262-270
dcterms.bibliographicCitationSakoe, H., Chiba, S., A similarity evaluation of speech patterns by dynamic programming (1970) Nat. Meeting of Institute of Electronic Communications Engineers of Japan, p. 136
dcterms.bibliographicCitationSakoe, H., Chiba, S., Dynamic programming algorithm optimization for spoken word recognition (1978) IEEE Trans. Acoust. Speech Sig. Process., 26 (1), pp. 43-49
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event5th International Conference on Man-Machine Interactions, ICMMI 2017
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-67792-7_21
dc.subject.keywordsDTW
dc.subject.keywordsHierarchical clustering
dc.subject.keywordsSingle/complete linkage
dc.subject.keywordsCluster analysis
dc.subject.keywordsTime series
dc.subject.keywordsDissimilarity measures
dc.subject.keywordsEffective measures
dc.subject.keywordsEuclidean distance
dc.subject.keywordsHier-archical clustering
dc.subject.keywordsHierarchical agglomerative clustering
dc.subject.keywordsSingle/complete linkage
dc.subject.keywordsTime-series data
dc.subject.keywordsVisual similarity
dc.subject.keywordsCosts
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAcknowledgements. This work was partially supported by the Ministry of Science and Higher Education funding for statutory activities (BK-220/RAu-3/2016) and the Ministry of Science and Higher Education funding for statutory activities of young researchers (BKM-508/RAu-3/2016). The work was performed using the infrastructure supported by POIG.02.03.01-24-099/13 grant: GeCONiI—Upper Silesian Center for Computational Science and Engineering.
dc.relation.conferencedate3 October 2017 through 6 October 2017
dc.type.spaConferencia
dc.identifier.orcid55985160800
dc.identifier.orcid7004127726
dc.identifier.orcid57021964300
dc.identifier.orcid57195996744


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.