Mostrar el registro sencillo del ítem
Hierarchical agglomerative clustering of time-warped series
dc.contributor.editor | Gruca A. | |
dc.contributor.editor | Czachorski T. | |
dc.contributor.editor | Harezlak K. | |
dc.contributor.editor | Kozielski S. | |
dc.contributor.editor | Piotrowska A. | |
dc.contributor.editor | Czachorski T. | |
dc.creator | Kotas, Marian | |
dc.creator | Leski J. | |
dc.creator | Moroń T. | |
dc.creator | Guzmán J.G. | |
dc.date.accessioned | 2020-03-26T16:32:35Z | |
dc.date.available | 2020-03-26T16:32:35Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Advances in Intelligent Systems and Computing; Vol. 659, pp. 207-216 | |
dc.identifier.isbn | 9783319677910 | |
dc.identifier.issn | 21945357 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8913 | |
dc.description.abstract | We have developed a procedure for hierarchical agglomerative clustering of time series data. To measure the dissimilarity between these data, we use classically the Euclidean distance or we apply the costs of the series nonlinear alignment (time warping). In the latter approach, we use the classical costs or the modified ones. The modification consists in matching short signal segments instead of single signal samples. The procedure is applied to a few datasets from the internet archive of time series. In this archive, the series of the same classes possess visual similarity but their time evolution is often different (the characteristic waves have different location within the individual signals). Therefore the use of the Euclidean distance as the dissimilarity measure gives poor results. After time warping, the nonlinearly aligned signals match each other better, and therefore the total cost of the alignment appears to be a much more effective measure. It results in higher values of the Purity index used to evaluate the results of clustering. In most cases, the proposed modification of the alignment costs definition leads to still higher values of the index. © 2018, Springer International Publishing AG. | eng |
dc.description.sponsorship | Ministry of Higher Education: BK-220/RAu-3/2016, BKM-508/RAu-3/2016, POIG.02.03.01-24-099/ | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030788309&doi=10.1007%2f978-3-319-67792-7_21&partnerID=40&md5=e468edc333362f58b3c61973e1e7dfff | |
dc.title | Hierarchical agglomerative clustering of time-warped series | |
dcterms.bibliographicCitation | Bellman, R.E., Dreyfus, S.E., (2015) Applied Dynamic Programming, , Princeton University Press, Princeton | |
dcterms.bibliographicCitation | Bien, J., Tibshirani, R., Hierarchical clustering with prototypes via minimax linkage (2011) J. Am. Stat. Assoc., 106 (495), pp. 1075-1084 | |
dcterms.bibliographicCitation | Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., (2015) The UCR Time Series Classification Archive, , http://www.cs.ucr.edu/ | |
dcterms.bibliographicCitation | Everitt, B.S., Landau, S., Leese, M., Stahl, D., (2011) Hierarchical Clustering, pp. 71-110. , Wiley, Hoboken | |
dcterms.bibliographicCitation | Gupta, L., Molfese, D.L., Tammana, R., Simos, P.G., Nonlinear alignment and averaging for estimating the evoked potential (1996) IEEE Trans. Biomed. Eng., 43 (4), pp. 348-356 | |
dcterms.bibliographicCitation | Keogh, E., Exact indexing of dynamic time warping (2002) VLDB 2002, pp. 406-417 | |
dcterms.bibliographicCitation | Keogh, E.J., Pazzani, M.J., Scaling up dynamic time warping for datamining applications (2000) KDD 2000, pp. 285-289 | |
dcterms.bibliographicCitation | Kotas, M., Projective filtering of time warped ECG beats (2008) Comput. Biol. Med., 38 (1), pp. 127-137 | |
dcterms.bibliographicCitation | Kotas, M., Robust projective filtering of time-warped ECG beats (2008) Comput. Methods Programs Biomed., 92 (2), pp. 161-172 | |
dcterms.bibliographicCitation | Kotas, M., Pander, T., Leski, J.M., Averaging of nonlinearly aligned signal cycles for noise suppression (2015) Biomed. Sig. Process. Control, 21, pp. 157-168 | |
dcterms.bibliographicCitation | Leski, J.M., Kotas, M., Hierarchical clustering with planar segments as prototypes (2015) Pattern Recogn. Lett., 54, pp. 1-10 | |
dcterms.bibliographicCitation | Moroń, T., Averaging of time-warped ECG signals for QT interval measurement (2016) Information Technologies in Medicine, 471, pp. 291-302. , Piȩtka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.), Springer International Publishing, Switzerland | |
dcterms.bibliographicCitation | Niennattrakul, V., Ratanamahatana, C.A., On clustering multimedia time series data using k-means and dynamic time warping (2007) MUE 2007, pp. 733-738 | |
dcterms.bibliographicCitation | Petitjean, F., Ketterlin, A., Gançarski, P., A global averaging method for dynamic time warping, with applications to clustering (2011) Pattern Recogn, 44 (3), pp. 678-693 | |
dcterms.bibliographicCitation | Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E., Searching and mining trillions of time series subsequences under dynamic time warping (2012) KDD 2012, pp. 262-270 | |
dcterms.bibliographicCitation | Sakoe, H., Chiba, S., A similarity evaluation of speech patterns by dynamic programming (1970) Nat. Meeting of Institute of Electronic Communications Engineers of Japan, p. 136 | |
dcterms.bibliographicCitation | Sakoe, H., Chiba, S., Dynamic programming algorithm optimization for spoken word recognition (1978) IEEE Trans. Acoust. Speech Sig. Process., 26 (1), pp. 43-49 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 5th International Conference on Man-Machine Interactions, ICMMI 2017 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-319-67792-7_21 | |
dc.subject.keywords | DTW | |
dc.subject.keywords | Hierarchical clustering | |
dc.subject.keywords | Single/complete linkage | |
dc.subject.keywords | Cluster analysis | |
dc.subject.keywords | Time series | |
dc.subject.keywords | Dissimilarity measures | |
dc.subject.keywords | Effective measures | |
dc.subject.keywords | Euclidean distance | |
dc.subject.keywords | Hier-archical clustering | |
dc.subject.keywords | Hierarchical agglomerative clustering | |
dc.subject.keywords | Single/complete linkage | |
dc.subject.keywords | Time-series data | |
dc.subject.keywords | Visual similarity | |
dc.subject.keywords | Costs | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | Acknowledgements. This work was partially supported by the Ministry of Science and Higher Education funding for statutory activities (BK-220/RAu-3/2016) and the Ministry of Science and Higher Education funding for statutory activities of young researchers (BKM-508/RAu-3/2016). The work was performed using the infrastructure supported by POIG.02.03.01-24-099/13 grant: GeCONiI—Upper Silesian Center for Computational Science and Engineering. | |
dc.relation.conferencedate | 3 October 2017 through 6 October 2017 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 55985160800 | |
dc.identifier.orcid | 7004127726 | |
dc.identifier.orcid | 57021964300 | |
dc.identifier.orcid | 57195996744 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.