Mostrar el registro sencillo del ítem

dc.contributor.editorSerrano C. J.E.
dc.contributor.editorMartínez-Santos, Juan Carlos
dc.creatorMeza J.
dc.creatorMarrugo A.G.
dc.creatorSierra E.
dc.creatorGuerrero M.
dc.creatorMeneses J.
dc.creatorRomero L.A.
dc.date.accessioned2020-03-26T16:32:35Z
dc.date.available2020-03-26T16:32:35Z
dc.date.issued2018
dc.identifier.citationCommunications in Computer and Information Science; Vol. 885, pp. 213-225
dc.identifier.isbn9783319989976
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8910
dc.description.abstractIn recent years, the generation of accurate topographic reconstructions has found applications ranging from geomorphic sciences to remote sensing and urban planning, among others. The production of high resolution, high-quality digital elevation models (DEMs) requires a significant investment in personnel time, hardware, and software. Photogrammetry offers clear advantages over other methods of collecting geomatic information. Airborne cameras can cover large areas more quickly than ground survey techniques, and the generated Photogrammetry-based DEMs often have higher resolution than models produced with other remote sensing methods such as LIDAR (Laser Imaging Detection and Ranging) or RADAR (radar detection and ranging). In this work, we introduce a Structure from Motion (SfM) pipeline using Unmanned Aerial Vehicles (UAVs) for generating DEMs for performing topographic reconstructions and assessing the microtopography of a terrain. SfM is a computer vision technique that consists in estimating the 3D coordinates of many points in a scene using two or more 2D images acquired from different positions. By identifying common points in the images both the camera position (motion) and the 3D locations of the points (structure) are obtained. The output from an SfM stage is a sparse point cloud in a local XYZ coordinate system. We edit the obtained point in MeshLab to remove unwanted points, such as those from vehicles, roofs, and vegetation. We scale the XYZ point clouds using Ground Control Points (GCP) and GPS information. This process enables georeferenced metric measurements. For the experimental verification, we reconstructed a terrain suitable for subsequent analysis using GIS software. Encouraging results show that our approach is highly cost-effective, providing a means for generating high-quality, low-cost DEMs. © Springer Nature Switzerland AG 2018.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054350508&doi=10.1007%2f978-3-319-98998-3_17&partnerID=40&md5=6fa9e5e6a5410c02c669bb5dc5e2af6f
dc.titleA structure-from-motion pipeline for topographic reconstructions using unmanned aerial vehicles and open source software
dcterms.bibliographicCitationNelson, A., Reuter, H., Gessler, P., DEM production methods and sources (2009) Dev. Soil Sci., 33, pp. 65-85
dcterms.bibliographicCitationCarbonneau, P.E., Dietrich, J.T., Cost-effective non-metric photogrammetry from consumer-grade sUAS: Implications for direct georeferencing of structure from motion photogrammetry (2016) Earth Surf. Process. Land., 42, pp. 473-486
dcterms.bibliographicCitationNex, F., Remondino, F., UAV for 3D mapping applications: A review (2014) Appl. Geomat., 6 (1), pp. 1-15
dcterms.bibliographicCitationJames, M., Robson, S., Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application (2012) J. Geophys. Res. Earth Surf., 117 (F3)
dcterms.bibliographicCitationFonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., Topographic structure from motion: A new development in photogrammetric measurement (2013) Earth Surf. Process. Land., 38, pp. 421-430
dcterms.bibliographicCitationGoesele, M., Curless, B., Seitz, S.M., Multi-view stereo revisited (2006) 2009 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp. 2402-2409. , IEEE
dcterms.bibliographicCitationAgisoft Photoscan Professional, , http://www.agisoft.com/downloads/installer/ https://github.com/mapillary/OpenSfM
dcterms.bibliographicCitationOpendronemap, , https://github.com/OpenDroneMap/OpenDroneMap
dcterms.bibliographicCitationBradski, G., Kaehler, A., OpenCV. Dr. Dobb’s (2000) J. Softw. Tools., 3 https://www.altizure.com
dcterms.bibliographicCitationCignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., MeshLab: An open-source mesh processing tool (2008) Eurographics Italian Chapter Conference, 2008, pp. 129-136
dcterms.bibliographicCitationDuane, C.B., Close-range camera calibration (1971) Photogram. Eng, 37 (8), pp. 855-866 https://maps.google.com
dcterms.bibliographicCitationTuytelaars, T., Mikolajczyk, K., Local invariant feature detectors: A survey (2008) Found. Trends® Comput. Graph. Vis., 3 (3), pp. 177-280
dcterms.bibliographicCitationBolick, L., Harguess, J., A study of the effects of degraded imagery on tactical 3D model generation using structure-from-motion (2016) Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, 9828. , International Society for Optics and Photonics
dcterms.bibliographicCitationGrauman, K., Leibe, B., Visual object recognition (2011) Synthesis Lectures on Artificial Intelligence and Machine Learning, 5 (2), pp. 1-181
dcterms.bibliographicCitationLindeberg, T., Feature detection with automatic scale selection (1998) Int. J. Comput. Vis., 30 (2), pp. 79-116
dcterms.bibliographicCitationMuja, M., Lowe, D.G., Fast approximate nearest neighbors with automatic algorithm configuration (2009) VISAPP (1), 2 (331-340), p. 2
dcterms.bibliographicCitationTriggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W., Bundle adjustment—a modern synthesis (2000) IWVA 1999. LNCS, 1883, pp. 298-372. , https://doi.org/10.1007/3-540-44480-721, Triggs, B., Zisserman, A., Szeliski, R. (eds.), Springer, Heidelberg
dcterms.bibliographicCitationFurukawa, Y., Ponce, J., Accurate, dense, and robust multiview stereopsis (2010) IEEE Trans. Pattern Anal. Mach. Intell., 32 (8), pp. 1362-1376
dcterms.bibliographicCitationAdorjan, M., (2016) Opensfm Ein Kollaboratives Structure-From-Motion System, , betreuer/in (nen): M. wimmer, m. birsak
dcterms.bibliographicCitationinstitut für computergraphik und algorithmen. abschlussprüfung: 02.05.2016
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event13th Colombian Conference on Computing, CCC 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-98998-3_17
dc.subject.keywordsGeomatics
dc.subject.keywordsOpen source software
dc.subject.keywordsStructure from motion
dc.subject.keywordsAntennas
dc.subject.keywordsCameras
dc.subject.keywordsCost effectiveness
dc.subject.keywordsObject recognition
dc.subject.keywordsOpen systems
dc.subject.keywordsOptical radar
dc.subject.keywordsPhotogrammetry
dc.subject.keywordsPipelines
dc.subject.keywordsRemote sensing
dc.subject.keywordsRepair
dc.subject.keywordsRock mechanics
dc.subject.keywordsSurveying
dc.subject.keywordsTracking radar
dc.subject.keywordsUnmanned aerial vehicles (UAV)
dc.subject.keywordsVerification
dc.subject.keywordsCo-ordinate system
dc.subject.keywordsComputer vision techniques
dc.subject.keywordsDigital elevation model
dc.subject.keywordsExperimental verification
dc.subject.keywordsGeomatics
dc.subject.keywordsGround control points
dc.subject.keywordsStructure from motion
dc.subject.keywordsTopographic reconstruction
dc.subject.keywordsOpen source software
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAcknowledgement. This work has been partly funded by Universidad Tecnológica de Bolívar project (FI2006T2001). E. Sierra thanks Universidad Tecnológica de Bolívar for a Masters degree scholarship.
dc.relation.conferencedate26 September 2018 through 28 September 2018
dc.type.spaConferencia
dc.identifier.orcid57204065355
dc.identifier.orcid24329839300
dc.identifier.orcid56682678200
dc.identifier.orcid57200615582
dc.identifier.orcid7004348301
dc.identifier.orcid36142156300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.