Mostrar el registro sencillo del ítem

dc.creatorFajardo Cuadro, Juan Gabriel
dc.creatorValle H.
dc.creatorBuelvas A.
dc.date.accessioned2020-03-26T16:32:35Z
dc.date.available2020-03-26T16:32:35Z
dc.date.issued2018
dc.identifier.citationASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B-2018
dc.identifier.isbn9780791852088
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8904
dc.description.abstractExergy analysis for Nitric acid production plants are very few and many are outdated. This study aims to support existing scientific studies and incite new investigations of exergy analysis in modern times. An advanced exergy analysis was applied to a production plant with a capacity to process 350 tons/day of nitric acid at a concentration of 55%. The catalytic oxidation of ammonia, condensation and absorption of nitrous gases are considered as the principal process in the nitric acid production. The total destroyed exergy was 46772,55 KW. The component with the greatest impact was the catalytic converter, which presented 75.1% of the total avoidable exergy destruction rate of the plant. These findings are relevant as they can potentially reduce costs of nitric acid production. Copyright © 2018 ASME.eng
dc.description.sponsorshipAmerican Society of Mechanical Engineers (ASME)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Society of Mechanical Engineers (ASME)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063156043&doi=10.1115%2fIMECE2018-87495&partnerID=40&md5=5a08a58363be693ad1b507922bcf448e
dc.sourceScopus2-s2.0-85063156043
dc.titleAvoidable and unavoidable exergetic destruction analysis of a nitric acid production plant
dcterms.bibliographicCitation(2017) Energy Information Administraion, , https://www.eia.gov/, 5 January En línea
dcterms.bibliographicCitationBP Global, , www.bp.com/energyoutlook, En línea. Último acceso: 2017 January 15
dcterms.bibliographicCitationRiekert, L., The efficiency of energy utilization in chemical process (1974) Pergamon Press, 29, pp. 1613-1620
dcterms.bibliographicCitationDenbigh, K.G., The second-law efficiency of chemical process (1956) De Chemical Engineering Science, 1, p. 9
dcterms.bibliographicCitationVilarinho, A., Campos, J., Pinho, C., Energy and exergy analysis of an aromatics plant (2016) Case Studies in Thermal Engineering, 8, pp. 115-127
dcterms.bibliographicCitationMewada, R., Nimkar, S., Minimization of exergy losses in mono high pressure nitric acid process (2015) International Journal of Exergy, 17 (2)
dcterms.bibliographicCitationKelly, S., (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction
dcterms.bibliographicCitationTsatsaronis, G., Park, M., On avoidable and unavoidable exergy destructions and invstment costs in thermal systems (2002) Energy Conversion and Management, 43, pp. 1259-1270
dcterms.bibliographicCitationMorosuk, T., Tsatsaronis, G., Advanced exergy analysis for chemically reacting systems – Application to a simple open gas-turbine system (2009) International Journal of Thermodynamics, 12 (3), pp. 105-111
dcterms.bibliographicCitationTsatsaronis, G., Morosuk, T., Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas (2010) Energy, 35, pp. 820-829
dcterms.bibliographicCitationConnor, H., The manufacture of nitric acid (1976) Platinum Metals Rev, 1, pp. 2-9
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.eventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1115/IMECE2018-87495
dc.subject.keywordsAmmonia
dc.subject.keywordsCatalytic converters
dc.subject.keywordsExergy
dc.subject.keywordsNitric acid
dc.subject.keywordsAvoidable exergy destructions
dc.subject.keywordsDestroyed exergy
dc.subject.keywordsDestruction analysis
dc.subject.keywordsExergy Analysis
dc.subject.keywordsNitric acid production
dc.subject.keywordsProduction plant
dc.subject.keywordsReduce costs
dc.subject.keywordsScientific studies
dc.subject.keywordsCatalytic oxidation
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate9 November 2018 through 15 November 2018
dc.type.spaConferencia
dc.identifier.orcid56581610900
dc.identifier.orcid57207878802
dc.identifier.orcid57207884321


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.