Mostrar el registro sencillo del ítem

dc.contributor.editorSerrano C. J.E.
dc.contributor.editorMartínez-Santos, Juan Carlos
dc.creatorDomínguez Jiménez, Juan Antonio
dc.creatorCampillo Jiménez, Javier Eduardo
dc.date.accessioned2020-03-26T16:32:35Z
dc.date.available2020-03-26T16:32:35Z
dc.date.issued2018
dc.identifier.citationCommunications in Computer and Information Science; Vol. 885, pp. 444-458
dc.identifier.isbn9783319989976
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8901
dc.description.abstractElectric vehicles (EVs) offer a great alternative for decarbonizing the transport sector. However, insufficient recharging infrastructure and limited range increase the driver’s ‘range anxiety’. Furthermore, the autonomy information provided by vehicle manufacturers differs from the range obtained under real-driving conditions. In order to estimate the actual range of an EV under different driving profiles, accurate computational modeling is required. This paper presents a library for modeling and simulating EVs using the object-oriented modeling language Modelica that allows calculating the energy consumption and the impact of different driving behaviors on the vehicle’s driving range. Each vehicle’s model only requires generic parameters that can be obtained from the vehicle’s manufacturer’s specification sheet. The parameters of the example models have been calibrated using vehicle parameters found in the literature for several commercial vehicles. © Springer Nature Switzerland AG 2018.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054351813&doi=10.1007%2f978-3-319-98998-3_34&partnerID=40&md5=253bc33e43740b4cb904461c4f200a4f
dc.titleObject-oriented mathematical modeling for estimating electric vehicle’s range using modelica
dcterms.bibliographicCitationAlexander, R., Solving ordinary differential equations I: Nonstiff problems (E. Hairer, S.P. Norsett, and G. Wanner) (1990) SIAM Rev, 32 (3), p. 485
dcterms.bibliographicCitationBarcellona, S., Piegari, L., Improvement of Evs Range by Hybrid Storage Units
dcterms.bibliographicCitationBauml, T., Simic, D., Simulation and comparison of different energy management strategies of a series hybrid electric vehicle (2008) 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, pp. 1-5
dcterms.bibliographicCitationBjörnsson, L.H., Karlsson, S., The potential for brake energy regeneration under swedish conditions (2016) Appl. Energy, 168, pp. 75-84
dcterms.bibliographicCitationBraun, A., Rid, W., Energy consumption of an electric and an internal combustion passenger car (2017) A Comparative Case Study from Real World Data on the Erfurt Circuit in Germany. Transp. Res. Procedia, 27, pp. 468-475. , https://doi.org/10.1016/j.trpro.2017.12.044.http://linkinghub.elsevier.com/retrieve/pii/S2352146517309419
dcterms.bibliographicCitationBunce, L., Harris, M., Burgess, M., Charge up then charge out? Drivers perceptions and experiences of electric vehicles in the UK (2014) Transp. Res. Part A: Policy Pract., 59, pp. 278-287. , http://linkinghub.elsevier.com/retrieve/pii/S0965856413002395, https://doi.org/10.1016/j.tra.2013.12.001
dcterms.bibliographicCitationCarter, R., Cruden, A., Hall, P.J., Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle (2012) IEEE Trans. Vehic. Technol., 61 (4), pp. 1526-1533
dcterms.bibliographicCitationCellier, F.E., Kofman, E., (2006) Continuous System Simulation, , https://doi.org/10.1007/0-387-30260-3, Springer, Heidelberg
dcterms.bibliographicCitationChen, M., Rincon-Mora, G.A., Accurate electrical battery model capable of predicting runtime and IV performance (2006) IEEE Trans. Energy Convers., 21 (2), pp. 504-511
dcterms.bibliographicCitationDaina, N., Sivakumar, A., Polak, J.W., Modelling electric vehicles use: A survey on the methods (2017) Renew. Sustain. Energy Rev., 68, pp. 447-460. , https://doi.org/10.1016/j.rser.2016.10.005.http://linkinghub.elsevier.com/retrieve/pii/S1364032116306566
dcterms.bibliographicCitationDore, C., UK emissions of air pollutants 1970 to 2001 (2003) National Atmospheric Emissions Inventory
dcterms.bibliographicCitationEgbue, O., Long, S., Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions (2012) Energy Policy, 48, pp. 717-729. , https://doi.org/10.1016/j.enpol.2012.06.009.http://linkinghub.elsevier.com/retrieve/pii/S0301421512005162
dcterms.bibliographicCitationEinhorn, M., Conte, F.V., Kral, C., Niklas, C., Popp, H., Fleig, J., A modelica library for simulation of electric energy storages (2011) Proceedings of the 8Th International Modelica Conference, 20th–22nd March. Technical Univeristy
dcterms.bibliographicCitationDresden, Germany, pp. 436-445. , Linkping University Electronic Press
dcterms.bibliographicCitationEnang, W., Bannister, C., Modelling and control of hybrid electric vehicles (A comprehensive review) (2017) Renew. Sustain. Energy Rev., 74, pp. 1210-1239. , https://doi.org/10.1016/j.rser.2017.01.075.http://linkinghub.elsevier.com/retrieve/pii/S1364032117300850
dcterms.bibliographicCitationFritzson, P., (2010) Principles of Object-Oriented Modeling and Simulation with Modelica 3.2, , Wiley, Hoboken
dcterms.bibliographicCitationGerami Tehrani, M., (2013) Energy Efficiency Consideration in Electric Vehicle Transmission
dcterms.bibliographicCitationGonder, J., Earleywine, M., Sparks, W., Analyzing vehicle fuel saving opportunities through intelligent driver feedback. SAE (2012) Int. J. Passeng. Cars-Electron. Electr. Syst, 5 (201201-0494), pp. 450-461
dcterms.bibliographicCitationGrunditz, E.A., Thiringer, T., Performance analysis of current bevs based on a comprehensive review of specifications (2016) IEEE Trans. Transp. Electrif., 2 (3), pp. 270-289
dcterms.bibliographicCitationGuirong, Z., Henghai, Z., Houyu, L., The driving control of pure electric vehicle (2011) Procedia Environ. Sci., 10, pp. 433-438. , https://doi.org/10.1016/j.proenv.2011.09.071, http://www.sciencedirect.com/science/article/pii/S1878029611002660. 2011 3rd International Conference on Environmental Science and Information Application Technology ESIAT 2011
dcterms.bibliographicCitationGuo, N., Chen, Z., Wu, Y., Shen, J., Xiao, R., A Novel Velocity Forecast Method for Improving Predictive Energy Management of Plug-In Hybrid Electric Vehicles
dcterms.bibliographicCitationGuzzella, L., Sciarretta, A., (2007) Vehicle Propulsion Systems, 1. , https://doi.org/10.1007/978-3-540-74692-8, Springer, Heidelberg
dcterms.bibliographicCitationHayes, J.G., de Oliveira, R.P.R., Vaughan, S., Egan, M.G., Simplified electric vehicle power train models and range estimation (2011) 2011 IEEE Vehicle Power and Propulsion Conference, pp. 1-5. , https://doi.org/10.1109/VPPC.2011.6043163, September
dcterms.bibliographicCitationHuertas, J.I., Díaz, J., Cordero, D., Cedillo, K., A new methodology to determine typical driving cycles for the design of vehicles power trains (2018) Int. J. Interact. Des. Manuf. (Ijidem), 12 (1), pp. 319-326
dcterms.bibliographicCitationInternational Energy Agency: Global EV Outlook 2017 (2017) Two Million and Counting, , www.iea.org, Technical report
dcterms.bibliographicCitationLaitinen, H., Saalasti, O.Y., Lajunen, A., Tammi, K., (2017) Improving Electric Vehicle Energy Efficiency with Two-Speed Gearbox
dcterms.bibliographicCitationLangbroek, J.H., Franklin, J.P., Susilo, Y.O., The effect of policy incentives on electric vehicle adoption (2016) Energy Policy, 94, pp. 94-103. , https://doi.org/10.1016/j.enpol.2016.03.050.http://linkinghub.elsevier.com/retrieve/pii/S0301421516301550
dcterms.bibliographicCitationLi, Y., Zhang, X., Yang, J., A cost-effective regenerative braking system for electric vehicles driven by induction machine (2016) 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-5
dcterms.bibliographicCitationScoltock, J., Calderon-Lopez, G., Forsyth, A.J., Topology and Magnetics Optimisation for a 100-Kw Bi-Directional DC-DC Converter
dcterms.bibliographicCitationTrentelman, T., Sutherland, J., Oizumi, K., Aoyama, K., Modelica based naval architecture library for small autonomous boat design (2017) Proceedings of the 12Th International Modelica Conference, 132, pp. 643-652. , Prague, Czech Republic, 15–17 May 2017, Linköping University Electronic Press
dcterms.bibliographicCitationVassileva, I., Campillo, J., Adoption barriers for electric vehicles: Experiences from early adopters in Sweden (2017) Energy, 120, pp. 632-641. , https://doi.org/10.1016/j.energy.2016.11.119.http://linkinghub.elsevier.com/retrieve/pii/S0360544216317741
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event13th Colombian Conference on Computing, CCC 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-98998-3_34
dc.subject.keywordsElectric vehicles
dc.subject.keywordsLibrary
dc.subject.keywordsModelica
dc.subject.keywordsModeling
dc.subject.keywordsRange
dc.subject.keywordsAutomobile manufacture
dc.subject.keywordsCommercial vehicles
dc.subject.keywordsElectric vehicles
dc.subject.keywordsEnergy utilization
dc.subject.keywordsEstimation
dc.subject.keywordsLibraries
dc.subject.keywordsModels
dc.subject.keywordsComputational model
dc.subject.keywordsElectric Vehicles (EVs)
dc.subject.keywordsModelica
dc.subject.keywordsModeling and simulating
dc.subject.keywordsObject-oriented modeling languages
dc.subject.keywordsRange
dc.subject.keywordsSpecification sheets
dc.subject.keywordsVehicle manufacturers
dc.subject.keywordsModeling languages
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate26 September 2018 through 28 September 2018
dc.type.spaConferencia
dc.identifier.orcid56682770100
dc.identifier.orcid55609096600


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.