Mostrar el registro sencillo del ítem

dc.creatorMéndez-Calderón E.K.
dc.creatorOcampo-Castaño J.C.
dc.creatorOrrego C.E.
dc.date.accessioned2020-03-26T16:32:34Z
dc.date.available2020-03-26T16:32:34Z
dc.date.issued2018
dc.identifier.citationJournal of Food Process Engineering; Vol. 41, Núm. 1
dc.identifier.issn01458876
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8891
dc.description.abstractConvective drying is a conventional method to prolong the shelf-life of foods that could negatively affect the product quality due to the long exposure time to high temperature. Ultrasound (US) has been used for reducing the drying time while maintaining the product quality. In this study a Box-Behnken design of Response Surface Methodology (RSM) was used to evaluate the effects of US time-frequency (t), US power level (Pot), and hot air temperature (T) on the drying process time (DPT), apparent density (AD), and color difference (ΔE) of the dried mango slices (10.0 ± 1.0% wet basis). Fisher's statistical testing was performed for the analysis of variance (ANOVA) for quadratic regression equations. The optimization goals were to minimize the responses. Modeled optimized conditions were 52–55 °C, 45–60 W, and 3 min/30 min for T, Pot, and t, respectively. Energy consumption and carbon footprint were also estimated during the validation of the optimal drying conditions. Practical applications: This research explored the use of response surface methodology polynomial models fitted to the experimental data of US assisted drying assays to find the best values of air temperature, time-frequency, and power of sonication for minimization of the drying process time (DPT) apparent density, and color difference of mango slices. The results specified ranges for the input-variables where lower DPT and properly dried mango quality parameters co-exist with important reductions in operational costs and carbon foot-print compared with those estimated for conventional dehydration process. These findings are of interest toward the development of greener and more sustainable food drying processes. © 2017 Wiley Periodicals, Inc.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBlackwell Publishing Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85031107704&doi=10.1111%2fjfpe.12634&partnerID=40&md5=5bc2c500dfc5e0b25eb8b53a037bb343
dc.titleOptimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.)
dcterms.bibliographicCitationAshokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., Versteeg, C., Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system (2008) Innovative Food Science & Emerging Technologies, 9 (2), pp. 155-160. , http://doi.org/10.1016/j.ifset.2007.05.005
dcterms.bibliographicCitationBeck, S., Sabarez, H., Gaukel, V., Knoerzer, K., Enhancement of convective drying by application of airborne ultrasound - A response surface approach (2014) Ultrasonics Sonochemistry, 21 (6), pp. 2144-2150. , http://doi.org/10.1016/j.ultsonch.2014.02.013
dcterms.bibliographicCitationChong, C.H., Law, C.L., Figiel, A., Wojdylo, A., Oziemblowski, M., Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods (2013) Food Chemistry, 141 (4), pp. 3889-3896. , http://doi.org/10.1016/j.foodchem.2013.06.042
dcterms.bibliographicCitationCohen, J.S., Yang, T.C.S., Progress in food dehydration (1995) Trends in Food Science & Technology, 6 (1), pp. 20-25. , http://doi.org/10.1016/S0924–2244(00)88913-X
dcterms.bibliographicCitationCorzo, O., Álvarez, C., Color change kinetics of mango at different maturity stages during air drying (2014) Journal of Food Processing and Preservation, 38 (1), pp. 508-517. , http://doi.org/10.1111/j.1745–4549.2012.00801.x
dcterms.bibliographicCitationFernandes, F., Linhares, F., Rodrigues, S., Ultrasound as pre-treatment for drying of pineapple (2008) Ultrasonics Sonochemistry, 15 (6), pp. 1049-1054. , http://doi.org/10.1016/j.ultsonch.2008.03.009
dcterms.bibliographicCitationFernandes, F., Rodrigues, S., Ultrasound as pre-treatment for drying of fruits: Dehydration of banana (2007) Journal of Food Engineering, 82 (2), pp. 261-267. , http://doi.org/10.1016/j.jfoodeng.2007.02.032
dcterms.bibliographicCitationFijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., Witrowa-Rajchert, D., Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple (2016) Journal of Food Process Engineering, 39 (3), pp. 256-265. , http://doi.org/10.1111/jfpe.12217
dcterms.bibliographicCitationGamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., Garcia-Perez, J.V., Air-borne ultrasound application in the convective drying of strawberry (2014) Journal of Food Engineering, 128, pp. 132-139. , http://doi.org/10.1016/j.jfoodeng.2013.12.021
dcterms.bibliographicCitationGarcía-Pérez, J.V., Ozuna, C., Ortuño, C., Cárcel, J.A., Mulet, A., Modeling ultrasonically assisted convective drying of eggplant (2011) Drying Technology, 29 (13), pp. 1499-1509. , http://doi.org/10.1080/07373937.2011.576321
dcterms.bibliographicCitationGarcia-Perez, J.V., Ortuño, C., Puig, A., Carcel, J.A., Perez-Munuera, I., Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying (2012) Food and Bioprocess Technology, 5 (6), pp. 2256-2265. , http://doi.org/10.1007/s11947-011-0645-0
dcterms.bibliographicCitationLegay, M., Gondrexon, N., Le Person, S., Boldo, P., Bontemps, A., Enhancement of heat transfer by ultrasound: Review and recent advances (2011) International Journal of Chemical Engineering, 11, pp. 1-17. , http://doi.org/10.1155/2011/670108
dcterms.bibliographicCitationMéndez, E.K., Orrego, C.E., Manrique, D.L., Gonzalez, J.D., Vallejo, D., Power ultrasound application on convective drying of banana (Musa paradisiaca) (2015) Mango (Mangifera indica L.) and Guava (Psidium guajava L.), 9 (10), pp. 973-978
dcterms.bibliographicCitationMothibe, K.J., Wang, C.Y., Mujumdar, A.S., Zhang, M., Microwave-assisted pulse-spouted vacuum drying of apple cubes (2014) Drying Technology, 32 (15), pp. 1762-1768. , http://doi.org/10.1080/07373937.2014.934830
dcterms.bibliographicCitationMyers, R.H., Montgomery, D.C., Anderson-Cook, C.M., (2016) Response surface methodology: Process and product optimization using designed experiments, , (2nd. ed)., New York, John Wiley and Sons, Inc
dcterms.bibliographicCitationRahman, S., Food properties handbook (2008) Agricultural and Food Engineering Technologies Service, , (2n ed.)., Florida, CRC Press
dcterms.bibliographicCitationRamírez, M.J., Giraldo, G.I., Orrego, C.E., Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates (2015) Powder Technology, 277, pp. 89-96. , http://doi.org/10.1016/j.powtec.2015.02.060
dcterms.bibliographicCitationRodríguez-Ramiez, J., Mendez-Lagunas, L., López-Ortiz, A., Torres, S.S., True density and apparent density during the drying process for vegetables and fruits: A review (2012) Journal of Food Science, 77 (12), pp. 146-154. , http://doi.org/10.1111/j.1750–3841.2012.02990.x
dcterms.bibliographicCitationSabarez, H.T., Gallego-Juarez, J.A., Riera, E., Ultrasonic-assisted convective drying of apple slices (2012) Drying Technology, 30 (9), pp. 989-997. , http://doi.org/10.1080/07373937.2012.677083
dcterms.bibliographicCitationSchössler, K., Jäger, H., Knorr, D., Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper (2012) Journal of Food Engineering, 108 (1), pp. 103-110. , http://doi.org/10.1016/j.jfoodeng.2011.07.018
dcterms.bibliographicCitation(2016) Greenhouse gas equivalencies calculator, , https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator, Retrieved from
dcterms.bibliographicCitationVillalpando Guzman, J., Herrera López, E.J., Amaya Delgado, L., Godoy Zaragoza, M.A., Mateos Díaz, J.C., Rodriguez González, J., Jaubert Garibay, S., Efecto del secado complementario con microondas sobre tres formas de rebanada de mango (2011) Revista Mexicana de Ingeniería Química, 10, pp. 281-290
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1111/jfpe.12634
dc.subject.keywordsAnalysis of variance (ANOVA)
dc.subject.keywordsAtmospheric temperature
dc.subject.keywordsCarbon footprint
dc.subject.keywordsColor
dc.subject.keywordsColorimetry
dc.subject.keywordsDehydration
dc.subject.keywordsEnergy utilization
dc.subject.keywordsFruits
dc.subject.keywordsHeat convection
dc.subject.keywordsQuality control
dc.subject.keywordsSurface properties
dc.subject.keywordsThermal processing (foods)
dc.subject.keywordsTitration
dc.subject.keywordsUltrasonics
dc.subject.keywordsConventional methods
dc.subject.keywordsDehydration process
dc.subject.keywordsHot air temperature
dc.subject.keywordsOptimized conditions
dc.subject.keywordsQuadratic regression
dc.subject.keywordsQuality parameters
dc.subject.keywordsResponse surface methodology
dc.subject.keywordsStatistical testing
dc.subject.keywordsDrying
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors acknowledge the financial support of the FONTAGRO (Project FTG/RF-1330-RG) and UNIVERSIDAD NACIONAL DE COLOMBIA (Project HERMES 34573).
dc.type.spaArtículo
dc.identifier.orcid57196035802
dc.identifier.orcid57196030571
dc.identifier.orcid24338999200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.