Show simple item record

dc.creatorMontoya O.D.
dc.creatorGarcés, Alejandro
dc.creatorEspinosa-Pérez, G.
dc.date.accessioned2020-03-26T16:32:34Z
dc.date.available2020-03-26T16:32:34Z
dc.date.issued2018
dc.identifier.citationJournal of Energy Storage; Vol. 16, pp. 259-268
dc.identifier.issn2352152X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8889
dc.description.abstractThis paper presents a generalized interconnection and damping assignment passivity-based control (IDA-PBC) for electric energy storage systems (EESS) such as: superconducting magnetic energy storage (SMES) and supercapacitor energy storage (SCES). A general framework is proposed to represent the dynamical behavior of EESS interconnected to the electrical distribution system through forced commutated power electronic converters. A voltage source converter (VSC) and a pulse-width modulated current source converter (PWM-CSC) are used to integrate SCES and SMES systems to the electrical power systems respectively. The proposed control strategy allows active and reactive power interchange between the EESS and electric distribution grids independently, guaranteeing globally asymptotically convergence in the sense of Lyapunov via Hamiltonian formulation. Simulation results show the effectiveness and robustness of the generalized IDA-PBC to operate EESS as active and reactive power compensator in order to improve operative conditions in power distribution grids under balanced and unbalanced conditions. © 2018 Elsevier Ltdeng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211114&doi=10.1016%2fj.est.2018.01.018&partnerID=40&md5=ee7eae36f42153dad2e2415c9ba6c28e
dc.titleA generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationPalizban, O., Kauhaniemi, K., Energy storage systems in modern grids-matrix of technologies and applications (2016) J. Energy Storage, 6, pp. 248-259. , http://www.sciencedirect.com/science/article/pii/S2352152X1630010X
dcterms.bibliographicCitationLuo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl. Energy, 137, pp. 511-536
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596
dcterms.bibliographicCitationXiao, X.Y., Liu, Y., Jin, J.X., Li, C.S., Xu, F.W., HTS applied to power system: benefits and potential analysis for energy conservation and emission reduction (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-9
dcterms.bibliographicCitationJing, W., Lai, C.H., Wong, S.H.W., Wong, M.L.D., Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: a review (2016) IET Renew. Power Gener., 11 (4), pp. 461-469
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationOrtega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst., 32 (3), pp. 2445-2454
dcterms.bibliographicCitationSmith, S.C., Sen, P.K., Kroposki, B., Advancement of energy storage devices and applications in electrical power system (2008) 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-8
dcterms.bibliographicCitationRahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102
dcterms.bibliographicCitationRen, G., Ma, G., Cong, N., Review of electrical energy storage system for vehicular applications (2015) Renew. Sustain. Energy Rev., 41, pp. 225-236
dcterms.bibliographicCitationBensmaine, F., Bachelier, O., Tnani, S., Champenois, G., Mouni, E., LMI approach of state-feedback controller design for a statcom-supercapacitors energy storage system associated with a wind generation (2015) Energy Convers. Manag., 96, pp. 463-472
dcterms.bibliographicCitationDÅolu, M.K., Arsoy, A.B., Transient modeling and analysis of a DFIG based wind farm with supercapacitor energy storage (2016) Int. J. Electric. Power Energy Syst., 78, pp. 414-421
dcterms.bibliographicCitationFarhadi, M., Mohammed, O., Energy storage technologies for high-power applications (2016) IEEE Trans. Ind. Appl., 52 (3), pp. 1953-1961
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104
dcterms.bibliographicCitationPlanas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749
dcterms.bibliographicCitationHuang, S., Pham, D.C., Huang, K., Cheng, S., Space vector PWM techniques for current and voltage source converters: a short review (2012) 2012 15th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6
dcterms.bibliographicCitationMarzouki, A., Hamouda, M., Fnaiech, F., A review of PWM voltage source converters based industrial applications (2015) 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), pp. 1-6
dcterms.bibliographicCitationSerra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299
dcterms.bibliographicCitationShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364
dcterms.bibliographicCitationXue, Y., Zhang, X.P., Reactive power and ac voltage control of LCC HVDC system with controllable capacitors (2017) IEEE Trans. Power Syst., 32 (1), pp. 753-764
dcterms.bibliographicCitationGiraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453
dcterms.bibliographicCitationEspinoza, J.R., Joos, G., State variable decoupling and power flow control in PWM current-source rectifiers (1998) IEEE Trans. Ind. Electron., 45 (1), pp. 78-87
dcterms.bibliographicCitationAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5
dcterms.bibliographicCitationMohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626. , Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES14 - EUMISD)
dcterms.bibliographicCitationElsisi, M., Soliman, M., Aboelela, M., Mansour, W., Optimal design of model predictive control with superconducting magnetic energy storage for load frequency control of nonlinear hydrothermal power system using bat inspired algorithm (2017) J. Energy Storage, 12, pp. 311-318. , http://www.sciencedirect.com/science/article/pii/S2352152X16303358
dcterms.bibliographicCitationShi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95
dcterms.bibliographicCitationGil-González, W., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171. , http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4813
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238
dcterms.bibliographicCitationRamírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111
dcterms.bibliographicCitationBlasko, V., Kaura, V., A new mathematical model and control of a three-phase ac–dc voltage source converter (1997) IEEE Trans. Power Electron., 12 (1), pp. 116-123
dcterms.bibliographicCitationPerko, L., Differential Equations and Dynamical Systems, Ser. Texts in Applied Mathematics (2013), https://books.google.com.co/books?id=VFnSBwAAQBAJ, Springer New York
dcterms.bibliographicCitationKhalil, H., Nonlinear Systems, Ser. Always Learning (2013), https://books.google.com.co/books?id=VZ72nQEACAAJ, Pearson Education, Limited
dcterms.bibliographicCitationCastaños, F., Gromov, D., Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints (2016) Syst. Control Lett., 94, pp. 11-18
dcterms.bibliographicCitationNunna, K., Sassano, M., Astolfi, A., Constructive interconnection and damping assignment for port-controlled Hamiltonian systems (2015) IEEE Trans. Autom. Control, 60 (9), pp. 2350-2361
dcterms.bibliographicCitationMartínez-Pérez, I., Espinosa-Perez, G., Sandoval-Rodríguez, G., Dòria-Cerezo, A., IDA passivity-based control of single phase back-to-back converters (2008) IEEE Int. Symp. Ind. Electron., (2), pp. 74-79
dcterms.bibliographicCitationChapman, S., Electric Machinery Fundamentals, Ser. McGraw-Hill Series in Electrical and Computer Engineering (2005), McGraw-Hill Companies, Incorporated
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.est.2018.01.018
dc.subject.keywordsElectrical energy storage systems (EESS)
dc.subject.keywordsGeneralized mathematical model
dc.subject.keywordsInterconnection and damping assignment passivity-based control (IDA-PBC)
dc.subject.keywordsSupercapacitor energy storage (SCES)
dc.subject.keywordsSuperconducting magnetic energy storage (SMES)
dc.subject.keywordsDamping
dc.subject.keywordsElectric energy storage
dc.subject.keywordsElectric power distribution
dc.subject.keywordsElectric power system interconnection
dc.subject.keywordsElectric power systems
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsMagnetic storage
dc.subject.keywordsPower converters
dc.subject.keywordsPulse width modulation
dc.subject.keywordsReactive power
dc.subject.keywordsSupercapacitor
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsElectrical distribution system
dc.subject.keywordsElectrical energy storage systems
dc.subject.keywordsInterconnection and damping assignment
dc.subject.keywordsPassivity based control
dc.subject.keywordsSupercapacitor energy storages
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsVoltage source converter (VSC)
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors want to thank for the support of the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering at the Technological University of Pereira.
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500
dc.identifier.orcid55989699400


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.