Show simple item record

DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators

dc.creatorMontoya O.D.
dc.creatorGarcés A.
dc.creatorSerra F.M.
dc.date.accessioned2020-03-26T16:32:33Z
dc.date.available2020-03-26T16:32:33Z
dc.date.issued2018
dc.identifier.citationJournal of Energy Storage; Vol. 16, pp. 250-258
dc.identifier.issn2352152X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8888
dc.description.abstractThis paper presents an exact feedback linearization control strategy for voltage source converters (VSCs) applied to the integration of distributed energy resources (DERs) in smart distribution systems and microgrids. System dynamics is represented by an average nonlinear model which is transformed algebraically into an equivalent linear model by simple substitutions, avoiding to use Taylor's series or another equivalent linearization technique. The equivalent linear model preserves all characteristics of the nonlinear model, which implies that the control laws obtained are completely applicable on its nonlinear representation. Stability analysis is made using the passivity-based technique. The exact feedback linearization control in combination with passivity-based control (PBC) theory guarantees to obtain a global asymptotically stable controller in the sense of Lyapunov for its closed-loop representation. The effectiveness and robustness of the proposed methodology is tested in a low-voltage microgrid with a photovoltaic system, a supercapacitor energy storage (SCES) device and unbalance loads. All simulation scenarios are conducted in MATLAB/SIMULINK environment via SimPowerSystem library. © 2018 Elsevier Ltdeng
dc.description.sponsorshipConsejo Nacional de Investigaciones Científicas y Técnicas Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Universidad Nacional de San Luis Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211743&doi=10.1016%2fj.est.2018.01.014&partnerID=40&md5=0d0fef0d7fa4b373c049b641035906f3
dc.titleDERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators
dcterms.bibliographicCitationHussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: state of the art (2017) Renew. Sustain. Energy Rev., 71, pp. 12-28
dcterms.bibliographicCitationMakky, A.A., Alaswad, A., Gibson, D., Olabi, A., Renewable energy scenario and environmental aspects of soil emission measurements (2017) Renew. Sustain. Energy Rev., 68, pp. 1157-1173
dcterms.bibliographicCitationWalker, S.B., van Lanen, D., Mukherjee, U., Fowler, M., Greenhouse gas emissions reductions from applications of power-to-gas in power generation (2017) Sustain. Energy Technol. Assess., 20, pp. 25-32
dcterms.bibliographicCitationBarma, M., Saidur, R., Rahman, S., Allouhi, A., Akash, B., Sait, S.M., A review on boilers energy use, energy savings, and emissions reductions (2017) Renew. Sustain. Energy Rev., 79, pp. 970-983
dcterms.bibliographicCitationStadler, M., Siddiqui, A., Marnay, C., Aki, H., Lai, J., Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings (2011) Eur. Trans. Electr. Power, 21 (2), pp. 1291-1309
dcterms.bibliographicCitationAl-falahi, M.D., Jayasinghe, S., Enshaei, H., A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system (2017) Energy Convers. Manage., 143, pp. 252-274
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: current status, future prospects and their enabling technology (2014) Renew. Sustain. Energy Rev., 39, pp. 748-764
dcterms.bibliographicCitationShanthi, P., Uma, G., Keerthana, M.S., Effective power transfer scheme for a grid connected hybrid wind/photovoltaic system (2017) IET Renew. Power Gener., 11 (7), pp. 1005-1017
dcterms.bibliographicCitationAmrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927
dcterms.bibliographicCitationLi, X., Hui, D., Lai, X., Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations (2013) IEEE Trans. Sustain. Energy, 4 (2), pp. 464-473
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationKaur, A., Kaushal, J., Basak, P., A review on microgrid central controller (2016) Renew. Sustain. Energy Rev., 55, pp. 338-345
dcterms.bibliographicCitationMahmoud, M.S., Rahman, M.S.U., Sunni, F.M.A.L., Review of microgrid architectures: a system of systems perspective (2015) IET Renew. Power Gener., 9 (8), pp. 1064-1078
dcterms.bibliographicCitationRezaei, M.M., Soltani, J., A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions (2015) Int. J. Electr. Power Energy Syst., 71, pp. 68-76. , http://www.sciencedirect.com/science/article/pii/S0142061515001246
dcterms.bibliographicCitationHabib, H.F., Mohamed, A., Hariri, M.E., Mohammed, O.A., Utilizing supercapacitors for resiliency enhancements and adaptive microgrid protection against communication failures (2017) Electr. Power Syst. Res., 145, pp. 223-233
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationRajesh, K., Dash, S., Rajagopal, R., Sridhar, R., A review on control of ac microgrid (2017) Renew. Sustain. Energy Rev., 71, pp. 814-819
dcterms.bibliographicCitationTayab, U.B., Roslan, M.A.B., Hwai, L.J., Kashif, M., A review of droop control techniques for microgrid (2017) Renew. Sustain. Energy Rev., 76, pp. 717-727
dcterms.bibliographicCitationSzcześniak, P., Kaniewski, J., Power electronics converters without dc energy storage in the future electrical power network (2015) Electr. Power Syst. Res., 129, pp. 194-207
dcterms.bibliographicCitationOrtega, A., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst., 32 (3), pp. 2445-2454
dcterms.bibliographicCitationBadrzadeh, B., Power conversion systems for modern ac-dc power systems (2012) Eur. Trans. Electr. Power, 22 (7), pp. 879-906
dcterms.bibliographicCitationHemmati, R., Azizi, N., Optimal control strategy on battery storage systems for decoupled active-reactive power control and damping oscillations (2017) J. Energy Storage, 13, pp. 24-34
dcterms.bibliographicCitationRocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P., Control of power converters in AC microgrids (2012) IEEE Trans. Power Electron., 27 (11), pp. 4734-4749
dcterms.bibliographicCitationPalizban, O., Kauhaniemi, K., Distributed cooperative control of battery energy storage system in ac microgrid applications (2015) J. Energy Storage, 3, pp. 43-51
dcterms.bibliographicCitationTeodorescu, R., Liserre, M., Rodriguez, P., Grid Converters for Photovoltaic and Wind Power Systems (2011), Wiley – IEEE
dcterms.bibliographicCitationAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47
dcterms.bibliographicCitationPlanas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749
dcterms.bibliographicCitationZhang, F., Zhao, H., Hong, M., Operation of networked microgrids in a distribution system (2015) CSEE J. Power Energy Syst., 1 (4), pp. 12-21
dcterms.bibliographicCitationRahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a {DFIG} wind generation system (2012) Energy Convers. Manage., 59, pp. 96-102
dcterms.bibliographicCitationShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364
dcterms.bibliographicCitationBinkai, J., Zhixin, W., Jianlong, Z., Li, S., Study on an improved model predictive control strategy with power self-coordination for VSC-MTDC (2016) Energy Procedia, 100, pp. 261-265. , 3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8–10 September 2016, Kitakyushu, Japan
dcterms.bibliographicCitationFan, X., Guan, L., Xia, C., Ji, T., IDA-PB control design for VSC-HVDC transmission based on PCHD model (2015) Int. Trans. Electr. Energy Syst., 25 (10), pp. 2133-2143. , eTEP-13-0141.R1
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., Forchetti, D.G., Interconnection and damping assignment control of a three-phase front end converter (2014) Int. J. Electr. Power Energy Syst., 60, pp. 317-324
dcterms.bibliographicCitationDhar, S., Dash, P., A new backstepping finite time sliding mode control of grid connected PV system using multivariable dynamic VSC model (2016) Int. J. Electr. Power Energy Syst., 82, pp. 314-330
dcterms.bibliographicCitationKhorramabadi, S.S., Bakhshai, A., Critic-based self-tuning pi structure for active and reactive power control of VSCs in microgrid systems (2015) IEEE Trans. Smart Grid, 6 (1), pp. 92-103
dcterms.bibliographicCitationAmoozegar, D., DSTATCOM modelling for voltage stability with fuzzy logic PI current controller (2016) Int. J. Electr. Power Energy Syst., 76, pp. 129-135
dcterms.bibliographicCitationSingh, B., Shahani, D.T., Verma, A.K., Neural network controlled grid interfaced solar photovoltaic power generation (2014) IET Power Electron., 7 (3), pp. 614-626
dcterms.bibliographicCitationValenciaga, F., Puleston, P.F., Battaiotto, P.E., Mantz, R.J., Passivity/sliding mode control of a stand-alone hybrid generation system (2000) IEE Proc. Control Theory Appl., 147 (6), pp. 680-686
dcterms.bibliographicCitationPerez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890
dcterms.bibliographicCitationKhalil, H., Nonlinear Systems, Always Learning (2013), Pearson Education, Limited
dcterms.bibliographicCitationSlotine, J., Li, W., Applied Nonlinear Control (1991), Prentice-Hall International Editions Prentice-Hall
dcterms.bibliographicCitationHaddad, W., Chellaboina, V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach (2011), Princeton University Press
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238
dcterms.bibliographicCitationSpth, H., Becker, K.-P., Energy storage by capacitors (2002) Eur. Trans. Electr. Power, 12 (3), pp. 211-216
dcterms.bibliographicCitationPalizban, O., Kauhaniemi, K., Energy storage systems in modern grids-matrix of technologies and applications (2016) J. Energy Storage, 6, pp. 248-259
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.est.2018.01.014
dc.subject.keywordsDistributed energy resource (DER)
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsPassivity-based control (PBC)
dc.subject.keywordsStability analysis
dc.subject.keywordsSupercapacitor
dc.subject.keywordsVoltage source converter (VSC)
dc.subject.keywordsControl system analysis
dc.subject.keywordsDistributed power generation
dc.subject.keywordsMATLAB
dc.subject.keywordsNonlinear systems
dc.subject.keywordsPhotovoltaic cells
dc.subject.keywordsSpatial variables control
dc.subject.keywordsSupercapacitor
dc.subject.keywordsDistributed energy resource
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsPassivity based control
dc.subject.keywordsStability analysis
dc.subject.keywordsVoltage source converter (VSC)
dc.subject.keywordsFeedback linearization
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015, by PhD program in Engineering of the Universidad Tecnológica de Pereira, Colombia, by Universidad Nacional de San Luis, Argentina, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Appendix A
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500
dc.identifier.orcid37104976300


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/