Show simple item record

An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation

dc.creatorDomínguez C.
dc.creatorTorres R.P.
dc.creatorGonzález H.
dc.identifier.citationEast Asian Journal on Applied Mathematics; Vol. 8, Núm. 2; pp. 365-384
dc.description.abstractWe develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to reduce computational cost and derive better approximations for problems with singularities and with large approximating systems. Numerical experiments confirm theoretical conclusions. © 2018 Global-Science Press.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 121565842348, 048-2015 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS
dc.format.mediumRecurso electrónico
dc.publisherGlobal Science Press
dc.titleAn a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
dcterms.bibliographicCitationArnold, D.N., An interior penalty finite element method with discontinuous elements (1982) SIAM J. Numer. Anal., 19, pp. 742-760
dcterms.bibliographicCitationBecker, R., Mesh adaptation for dirichlet flow control via nitsche’s method (2002) Comm. Numer. Methods Engrg., 18, pp. 669-680
dcterms.bibliographicCitationBecker, R., Hansbo, P., Stenberg, R., A finite element method for domain decomposition with non-matching grids (2003) Mathematical Modelling and Numerical Analysis, 37, pp. 209-225
dcterms.bibliographicCitationBoiveau, T., Burman, E., A penalty-free nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity (2016) IMA J. Numer. Anal., 36, pp. 770-795
dcterms.bibliographicCitationBraess, D., Finite elements (2001) Theory, Fast Solvers, and Applications in Solid Mechanics, , Cambridge University Press
dcterms.bibliographicCitationBrenner, S.C., Scott, L.R., The mathematical theory of finite element methods (2008) Texts in Applied Mathematics, 15. , Springer
dcterms.bibliographicCitationCarstensen, C., Dolzmann, G., Funken, S., Helm, D., Locking-free adaptive mixed finite element methods in linear elasticity (2000) Comput. Methods Appl. Mech. Engrg., 190, pp. 1701-1718
dcterms.bibliographicCitationDomínguez, C., Stephan, E.P., Maischak, M., FE/BE coupling for an acoustic fluid-structure interaction problem. Residual a posteriori error estimates (2012) Internat. J. Numer. Methods Engrg., 89, pp. 299-322
dcterms.bibliographicCitationFritz, A., Hüeber, S., Wohlmuth, B., A comparison of mortar and nitsche techniques for linear elasticity (2004) Calcolo, 41, pp. 115-137
dcterms.bibliographicCitationHansbo, A., Hansbo, P., Larson, M.G., A finite element method on composite grids based on nitsche’s method (2003) Math. Model. Numer. Anal., 37, pp. 495-514
dcterms.bibliographicCitationHeinrich, B., Nicaise, S., The nitsche mortar finite-element method for transmission problems with singularities (2003) IMA J. Numer. Anal., 23, pp. 331-358
dcterms.bibliographicCitationNitsche, J., Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind (1971) Abh. Math. Semin. Univ. Hambg., 36, pp. 9-15
dcterms.bibliographicCitationVerfürth, R., (1996) A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, , Teubner Verlag
dcterms.bibliographicCitationVerfürth, R., A posteriori error estimation techniques for finite element methods (2013) Numerical Mathematics and Scientific Computation, , Oxford University Press
dcterms.bibliographicCitationVergara, C., Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics (2011) J. Sci. Comput., 46, pp. 100-123
dcterms.bibliographicCitationWidlund, O.B., Keyes, D.E., Domain decomposition methods in science and engineering XVI (2007) Lecture Notes in Computational Science and Engineering, 55. , Springer
dcterms.bibliographicCitationWohlmuth, B.I., A residual based error estimator for mortar finite element discretizations (1999) Numer. Math., 84, pp. 143-171
dc.subject.keywordsA posteriori error estimator
dc.subject.keywordsAdaptive method
dc.subject.keywordsDomain decomposition method
dc.subject.keywordsHarmonic elastodinamics equation
dc.subject.keywordsNitsche method
dc.subject.keywordsNon-matching mesh
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis research work was supported by Colciencias (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia) under the project 121565842348 (Contract No. 048-2015). We thank the anonymous reviewers for careful reading of the manuscript and their encouraging comments and suggestions.

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as