Mostrar el registro sencillo del ítem
Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
dc.creator | Montoya O.D. | |
dc.creator | Gil-González W. | |
dc.creator | Garcés, Alejandro | |
dc.creator | Espinosa-Pérez, G. | |
dc.date.accessioned | 2020-03-26T16:32:33Z | |
dc.date.available | 2020-03-26T16:32:33Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Journal of Energy Storage; Vol. 17, pp. 261-271 | |
dc.identifier.issn | 2352152X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8880 | |
dc.description.abstract | In this paper an indirect interconnection and damping assignment passivity-based control (IDA-PBC) applied to the three-phase superconducting magnetic energy storage systems (SMES) is proposed to support active and reactive power in distribution systems. The SMES is connected to the distribution network using a pulse-width-modulated current source converter (PWM-CSC), due to its intrinsic current features that are more natural for controlling the current of a superconducting coil. A Hamiltonian function is selected as an hyperboloid representation taking into account the open loop dynamics of the system. The indirect control strategy is used to decouple the dynamical behavior between ac and dc side of the system, which allows to control active and reactive power independently in the ac side, while the dc side of the converter is employed as a supervisor controller for active power interchange. Simulation results demonstrate the efficiency and robustness of the proposed control methodology applied on a low-voltage distribution network under different operative conditions where the tracking errors were less than 6.2%. © 2018 Elsevier Ltd | eng |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048704609&doi=10.1016%2fj.est.2018.03.004&partnerID=40&md5=4f360b1e69eb829c98314b4ba6505c36 | |
dc.title | Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC | |
dcterms.bibliographicCitation | Luo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl. Energy, 137, pp. 511-536 | |
dcterms.bibliographicCitation | Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Ren, L., Li, J., Chen, S., Application of SMES in wind farm to improve voltage stability (2008) Physica C, 468 (15-20), pp. 2100-2103 | |
dcterms.bibliographicCitation | Kim, A.-R., Kim, G.-H., Heo, S., Park, M., Yu, I.-K., Kim, H.-M., SMES application for frequency control during islanded microgrid operation (2013) Physica C, 484, pp. 282-286 | |
dcterms.bibliographicCitation | Farahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39 | |
dcterms.bibliographicCitation | Vazquez, S., Lukic, S.M., Galvan, E., Franquelo, L.G., Carrasco, J.M., Energy storage systems for transport and grid applications (2010) IEEE Trans. Ind. Electron., 57 (12), pp. 3881-3895 | |
dcterms.bibliographicCitation | Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19 | |
dcterms.bibliographicCitation | Bilgin, H., Ermis, M., Current source converter based STATCOM: operating principles, design and field performance (2011) Electr. Power Syst. Res., 81 (2), pp. 478-487 | |
dcterms.bibliographicCitation | Yunus, A.M.S., Masoum, M.A.S., Abu-Siada, A., Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell (2012) IEEE Trans. Appl. Supercond., 22 (4), p. 5702009 | |
dcterms.bibliographicCitation | Wang, S., Tang, Y., Shi, J., Gong, K., Liu, Y., Ren, L., Li, J., Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations (2015) IET Renew. Power Gener., 9 (2), pp. 89-98 | |
dcterms.bibliographicCitation | Ali, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47 | |
dcterms.bibliographicCitation | Giraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453 | |
dcterms.bibliographicCitation | Jiang, X., Chu, X., Wu, X., Liu, W., Lai, Y., Wang, Z., Dai, Y., Lan, H., Smes system for study on utility and customer power applications (2001) IEEE Trans. Appl. Supercond., 11 (1), pp. 1765-1768 | |
dcterms.bibliographicCitation | Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150 | |
dcterms.bibliographicCitation | Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171 | |
dcterms.bibliographicCitation | Hayashi, H., Hatabe, Y., Nagafuchi, T., Taguchi, A., Terazono, K., Ishii, T., Taniguchi, S., Test results of power system control by experimental SMES (2006) IEEE Trans. Appl. Supercond., 16 (2), pp. 598-601 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104 | |
dcterms.bibliographicCitation | Ngamroo, I., Simultaneous optimization of SMES coil size and control parameters for robust power system stabilization (2011) IEEE Trans. Appl. Supercond., 21 (3), pp. 1358-1361 | |
dcterms.bibliographicCitation | Wang, Z., Zou, Z., Zheng, Y., Design and control of a photovoltaic energy and SMES hybrid system with current-source grid inverter (2013) IEEE Trans. Appl. Supercond., 23 (3). , 5701505-5701505 | |
dcterms.bibliographicCitation | Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5 | |
dcterms.bibliographicCitation | Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5 | |
dcterms.bibliographicCitation | Hemeida, A.M., A fuzzy logic controlled superconducting magnetic energy storage, {SMES} frequency stabilizer (2010) Electr. Power Syst. Res., 80 (6), pp. 651-656 | |
dcterms.bibliographicCitation | Ali, M.H., Wu, B., Tamura, J., Dougal, R.A., Minimization of shaft oscillations by fuzzy controlled {SMES} considering time delay (2010) Electr. Power Syst. Res., 80 (7), pp. 770-777 | |
dcterms.bibliographicCitation | Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782 | |
dcterms.bibliographicCitation | Mahmud, M.A., Hossain, M.J., Pota, H.R., Dynamical modeling and nonlinear control of superconducting magnetic energy systems: applications in power systems (2014) 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95 | |
dcterms.bibliographicCitation | Ramírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111 | |
dcterms.bibliographicCitation | Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907 | |
dcterms.bibliographicCitation | Serra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299 | |
dcterms.bibliographicCitation | Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238 | |
dcterms.bibliographicCitation | Donaire, A., Ortega, R., Romero, J., Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces (2016) Syst. Control Lett., 94, pp. 118-126 | |
dcterms.bibliographicCitation | Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir (2013) J. Hydrol., 476, pp. 433-441. , http://www.sciencedirect.com/science/article/pii/S002216941200981X | |
dcterms.bibliographicCitation | Viero, D.P., Valipour, M., Modeling anisotropy in free-surface overland and shallow inundation flows (2017) Adv. Water Resour., 104, pp. 1-14. , http://www.sciencedirect.com/science/article/pii/S0309170816307722 | |
dcterms.bibliographicCitation | Valipour, M., How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? (2016) Agriculture, 6 (4), p. 53 | |
dcterms.bibliographicCitation | Valipour, M., Sefidkouhi, M.A.G., Raeini-Sarjaz, M., Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events (2017) Agric. Water Manag., 180, pp. 50-60. , http://www.sciencedirect.com/science/article/pii/S0378377416303195 | |
dcterms.bibliographicCitation | Sivák, P., Hroncová, D., State-space model of a mechanical system in MATLAB/simulink (2012) Proc. Eng., 48, pp. 629-635. , http://www.sciencedirect.com/science/article/pii/S1877705812046267, Modelling of Mechanical and Mechatronics Systems | |
dcterms.bibliographicCitation | Rashid, M.H., Power Electronics Handbook-Devices, Circuits, and Applications (2011), Elsevier | |
dcterms.bibliographicCitation | IEEE standard for interconnecting distributed resources with electric power systems – Amendment 1 (2014) IEEE Std 1547-2014 (Amendment to IEEE Std 1547-2003), pp. 1-16 | |
dcterms.bibliographicCitation | Bierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842 | |
dcterms.bibliographicCitation | Perko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business Media | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.est.2018.03.004 | |
dc.subject.keywords | Active and reactive power compensation | |
dc.subject.keywords | Distribution systems | |
dc.subject.keywords | Interconnection and damping assignment passivity-based control | |
dc.subject.keywords | Pulse-width-modulated current source converter | |
dc.subject.keywords | Superconducting magnetic energy storage | |
dc.subject.keywords | Damping | |
dc.subject.keywords | Electric energy storage | |
dc.subject.keywords | Electric power distribution | |
dc.subject.keywords | Electric power system interconnection | |
dc.subject.keywords | Magnetic storage | |
dc.subject.keywords | Power converters | |
dc.subject.keywords | Pulse width modulation | |
dc.subject.keywords | Reactive power | |
dc.subject.keywords | Superconducting coils | |
dc.subject.keywords | Superconducting magnets | |
dc.subject.keywords | Voltage distribution measurement | |
dc.subject.keywords | Active and Reactive Power | |
dc.subject.keywords | Distribution systems | |
dc.subject.keywords | Passivity based control | |
dc.subject.keywords | Pulse-width-modulated | |
dc.subject.keywords | Superconducting magnetic energy storages | |
dc.subject.keywords | Hamiltonians | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | The authors want to thank the support of National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira. Appendix A | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 36449223500 | |
dc.identifier.orcid | 55989699400 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.