Mostrar el registro sencillo del ítem

dc.creatorArias Amaya, Fabián
dc.creatorMalakhaltsev M.
dc.date.accessioned2020-03-26T16:32:33Z
dc.date.available2020-03-26T16:32:33Z
dc.date.issued2018
dc.identifier.citationLobachevskii Journal of Mathematics; Vol. 39, Núm. 5; pp. 623-633
dc.identifier.issn19950802
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8879
dc.description.abstractprincipal G-bundle with singularities is a principal bundle π: P¯ → M with structure group G¯ which reduces to a subgroup G ⊂ G¯ on the set M \ Σ, where M is an n-dimensional compact manifold and Σ ⊂ M is a k-dimensional submanifold. For example, a vector field on an n-dimensional Riemannian manifold M defines reduction of the orthonormal frame bundle of M to the subgroup O(n − 1) ⊂ O(n) on the set M \ Σ, where Σ is the set of zeros of this vector field. The aim of this paper is to construct topological invariants of principal bundles with singularities. To do this we apply the obstruction theory to the sectionM → P¯ /Gcorresponding to the reduction and obtain the topological invariant as a class in Hn−k(M,M \ Σ; πn−k−1(G¯ /G)). We study the properties of this invariants and, in particular, consider cases k = 0 y k = n − 1. © 2018, Pleiades Publishing, Ltd.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPleiades Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049590504&doi=10.1134%2fS1995080218050013&partnerID=40&md5=bce3246b966ea8a5b62709e9331e2607
dc.titleTopological Invariants of Principal G-Bundles with Singularities
dcterms.bibliographicCitationAlekseevskij, D.V., Vinogradov, A.M., Lychagin, V.V., (1991) Geometry I. Basic Ideas and Concepts of Differential Geometry, Vol. 28 of Encyclopaedia of Mathematical Sciences, p. 255. , Springer, Berlin
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., (1963) Foundations of Differential Geometry, 1. , Interscience, New York, London
dcterms.bibliographicCitationMolino, P., Théorie des G-structures: le problème d’equivalence (1977) Lect. NotesMath., 588, p. 1
dcterms.bibliographicCitationSternberg, S., (1983) Lectures on Differential Geometry, , Chelsea, New York
dcterms.bibliographicCitationIvey, T.A., Landsberg, J.M., (2016) Cartan for the Beginners: Differential Geometry viaMoving Frames and Exterior Differential Systems, Vol. 175 of Graduate Studies in Mathematics, , AMS, Providence
dcterms.bibliographicCitationMontgomery, R., (2002) A Tour of Subriemannian Geometries, Their Geodesics and Applications, Vol. 91 of Math. Surveys and Monographs, , AMS, Providence
dcterms.bibliographicCitationBott, R.W., Tu, L.W., (1982) Differential forms in Algebraic Topology, Vol. 82 of Graduate Texts in Mathematics, , Springer, New York, Heidelberg, Berlin
dcterms.bibliographicCitationMilnor, J.W., Stasheff, J.D., (2005) Characteristic Classes, Vol. 32 of Texts and Readings in Mathematics, , Hindustan Book Agency, New Delhi
dcterms.bibliographicCitationKamber, F.W., Tondeur, P., (1975) Foliated Bundles and Characteristic Classes, , Springer-Verlag, Berlin
dcterms.bibliographicCitationZhitomirskii, M., (1992) Typical Singularities of Differential 1-forms and Pfaffian Equations, Vol. 113 of Translation of Mathematical Monographs, , AMS, Providence
dcterms.bibliographicCitationMartinet, J., Sur les singularités des formes différentielles (1970) Ann. Inst. Fourier.Grenoble, 20, pp. 95-178
dcterms.bibliographicCitationMalakhaltsev, M., A bundle of local Hamiltonians on a symplectic manifold with Martinet singularities (2004) Russ. Math. (Iz. VUZ), 48 (11), pp. 41-47
dcterms.bibliographicCitationMalakhaltsev, M., Differential complex associated to closed differential forms of nonconstant rank (2006) Lobachevskii J.Math., 23, pp. 183-192
dcterms.bibliographicCitationArteaga, J., Malakhalsev, M., Trejos, A., Isometry group and geodesics of theWagner lift of a Riemannian metric on two-dimensional manifold (2012) Lobachevskii J.Math., 33, pp. 293-311
dcterms.bibliographicCitationArteaga, J.R., Malakhaltsev, M., Symmetries of sub-Riemannian surfaces (2011) J. Geom. Phys., 61, pp. 290-308
dcterms.bibliographicCitationArias, F.A., Arteaga, J.R., Malakhaltsev, M., 3-webs with singularities (2016) Lobachevskii J.Math., 37, pp. 1-20
dcterms.bibliographicCitationArias, F.A., Malakhaltsev, M., A generalization of the Gauss–Bonnet–Hopf–Poincaréformula for sections and branched sections of bundles (2017) J. Geom. Phys, 121, pp. 108-122
dcterms.bibliographicCitationMukherjee, A., (2015) Differential Topology, Vol. 72 of Texts and Readings in Mathematics, , Birkhäuser, Basel
dcterms.bibliographicCitationDubrovin, B.A., Fomenko, A.T., Novikov, S.P., (1990) Modern Geometry—Methods and Applications, Part III: Introduction to Homology Theory, Vol. 124 of Graduate Texts in Mathematics, , Springer, New York etc
dcterms.bibliographicCitationJakubszyk, B., Zhitomirskii, M., Local reduction theorems and invariants for singular contact structures (2001) Ann. Inst. Fourier, 51, pp. 237-295
dcterms.bibliographicCitationSteenrod, N., (1951) The Topology of Fibre Bundles, , Princeton Univ. Press, Princeton
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1134/S1995080218050013
dc.subject.keywordsG-structure
dc.subject.keywordsObstruction
dc.subject.keywordsPrincipal bundle with singularities
dc.subject.keywordsSingularity of G-structure
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAcknowledgement. This investigation was supported by Vicerrectoría de Investigaciones and the Faculty of Sciences of Universidad de los Andes.
dc.type.spaArtículo
dc.identifier.orcid57076963500
dc.identifier.orcid6507151476


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.