Mostrar el registro sencillo del ítem

dc.creatorGiraldo O.D.M.
dc.creatorRuiz A.G.
dc.creatorVelazquez I.O.
dc.creatorPerez G.R.E.
dc.date.accessioned2020-03-26T16:32:32Z
dc.date.available2020-03-26T16:32:32Z
dc.date.issued2018
dc.identifier.citationIEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94
dc.identifier.isbn9781538651834
dc.identifier.issn21665478
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8876
dc.description.abstractIn this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology. © 2018 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048968428&doi=10.1109%2fGreenTech.2018.00025&partnerID=40&md5=1499c5d64ac2a8d64012798d1c65dcfb
dc.titlePassivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
dcterms.bibliographicCitationStrzelecki, R., Benysek, G., (2008) Power Electronics in Smart Electrical Energy Networks, , http://www.springer.com/la/book/9781848003170, Springer-Verlag London, Ed. Springer
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationSaleh, M., Esa, Y., Mhandi, Y., Brandauer, W., Mohamed, A., Design and implementation of CCNY DC microgrid testbed (2016) 2016 IEEE Industry Applications Society Annual Meeting, pp. 1-7. , Oct
dcterms.bibliographicCitationElliman, R., Gould, C., Al-Tai, M., Review of current and future electrical energy storage devices (2015) 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1-5. , Sept
dcterms.bibliographicCitationYang, Y., Ye, Q., Tung, L.J., Greenleaf, M., Li, H., Integrated size and energy management design of battery storage to enhance grid integration of large-scale pv power plants (2018) IEEE Trans. Ind. Electron., 65 (1), pp. 394-402. , Jan
dcterms.bibliographicCitationHadjipaschalis, I., Poullikkas, A., Efthimiou, V., Overview of current and future energy storage technologies for electric power applications (2009) Renewable Sustainable Energy Rev., 13 (6), pp. 1513-1522
dcterms.bibliographicCitationTeodorescu, R., Liserre, M., Rodriguez, P., (2011) Grid Converters for Photovoltaic and Wind Power Systems, 29. , John Wiley & Sons
dcterms.bibliographicCitationBruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage (2012) Nature Materials, 11 (1), pp. 19-29
dcterms.bibliographicCitationManwell, J.F., McGowan, J.G., Lead acid battery storage model for hybrid energy systems (1993) Sol. Energy, 50 (5), pp. 399-405
dcterms.bibliographicCitationOgawa, H., Ikoma, M., Kawano, H., Matsumoto, I., Metal hydride electrode for high energy density sealed nickel-metal hydride battery (1988) Power Sources 12: Research and Development in Non-Mechanical Electrical Power Sources, pp. 393-409
dcterms.bibliographicCitationGao, L., Liu, S., Dougal, R.A., Dynamic lithium-ion battery model for system simulation (2002) IEEE Trans Compon Packag Technol, 25 (3), pp. 495-505
dcterms.bibliographicCitationSalameh, Z.M., Casacca, M.A., Lynch, W.A., A mathematical model for lead-acid batteries (1992) IEEE Trans. Energy Convers., 7 (1), pp. 93-98
dcterms.bibliographicCitationBock, S., Pinheiro, J., Grundling, H., Hey, H., Pinheiro, H., Existence and stability of sliding modes in bi-directional DC-DC converters (2001) Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, 3, pp. 1277-1282. , IEEE
dcterms.bibliographicCitationWu, T.-F., Chang, C.-H., Chen, Y.-H., A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications (2000) IEEE Trans. Ind. Electron., 47 (2), pp. 287-296
dcterms.bibliographicCitationAbedi, M., Song, B.-M., Kim, R.-Y., Nonlinear-model predictive control based bidirectional converter for V2G battery charger applications (2011) Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE. IEEE, pp. 1-6
dcterms.bibliographicCitationMojallizadeh, M.R., Badamchizadeh, M.A., Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification (2016) IEEE J. Photovoltaics, 6 (2), pp. 532-539. , March
dcterms.bibliographicCitationSaleh, M., Voltage control dc/dc bidirectional converter simulink-software (2017) Mathworks-File Exchange, , https://www.mathworks.com/matlabcentral/fileexchange/63791-voltage-control-dc-dc-bidirectional-converter, July
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event2018 IEEE Annual Green Technologies Conference, GreenTech 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/GreenTech.2018.00025
dc.subject.keywordsBattery energy storage system (BESS)
dc.subject.keywordsBidirectional buck boost DC DC converter
dc.subject.keywordsCharge/discharge battery operating modes
dc.subject.keywordsCurrent control mode
dc.subject.keywordsLyapunov stability
dc.subject.keywordsPassivity based control (PBC)
dc.subject.keywordsCharging (batteries)
dc.subject.keywordsControl system stability
dc.subject.keywordsElectric current control
dc.subject.keywordsElectric inverters
dc.subject.keywordsEnergy storage
dc.subject.keywordsHamiltonians
dc.subject.keywordsMATLAB
dc.subject.keywordsSecondary batteries
dc.subject.keywordsBattery energy storage system (BESS)
dc.subject.keywordsBuck-boost DC-DC converter
dc.subject.keywordsCurrent control modes
dc.subject.keywordsLyapunov stability
dc.subject.keywordsOperating modes
dc.subject.keywordsPassivity based control
dc.subject.keywordsDC-DC converters
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technologyand Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Universidad Tecnolgica de Pereira.
dc.relation.conferencedate4 April 2018 through 6 April 2018
dc.type.spaConferencia
dc.identifier.orcid57202648917
dc.identifier.orcid56207250200
dc.identifier.orcid57202647160
dc.identifier.orcid57198269531


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.