Mostrar el registro sencillo del ítem

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.date.accessioned2020-03-26T16:32:32Z
dc.date.available2020-03-26T16:32:32Z
dc.date.issued2018
dc.identifier.citationJournal of Energy Storage; Vol. 18, pp. 459-466
dc.identifier.issn2352152X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8872
dc.description.abstractA bilinear proportional-integral (PI) controller based on passivity-based formulations for integrating superconducting magnetic energy storage (SMES) devices to power ac microgrids is proposed in this paper. A cascade connection between a dc–dc chopper and a voltage source converter is made to integrate the SMES system. The proposed controller guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. This controller exploits the well-known advantages of the proportional-integral (PI) actions via passivation theory. Active and reactive power compensation in the ac system through the SMES integration is proposed as the control objective. To achieve this goal, a radial ac distribution feeder with high penetration of distributed energy resources and time-varying loads is employed. The effectiveness and the robustness of the proposed bilinear PI controller verified by comparing its dynamical performance to conventional approaches such as conventional PI and feedback controllers. All simulation results are conducted via MATLAB/SIMULINK software by using SimPowerSystem library. © 2018 Elsevier Ltdeng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048734479&doi=10.1016%2fj.est.2018.05.020&partnerID=40&md5=548b01271c30eb39f010a06628543217
dc.titlePassivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach
dcterms.bibliographicCitationHussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: state of the art (2017) Renew. Sustain. Energy Rev., 71, pp. 12-28
dcterms.bibliographicCitationMontoya, O.D., Garcs, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912
dcterms.bibliographicCitationWalker, S.B., van Lanen, D., Mukherjee, U., Fowler, M., Greenhouse gas emissions reductions from applications of power-to-gas in power generation (2017) Sustain. Energy Technol. Assess., 20, pp. 25-32
dcterms.bibliographicCitationKeyhani, A., Design of Smart Power Grid Renewable Energy Systems (2016), John Wiley & Sons
dcterms.bibliographicCitationKatiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A., Microgrids management (2008) IEEE Power Energy Mag., 6 (3)
dcterms.bibliographicCitationAmrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationKaur, A., Kaushal, J., Basak, P., A review on microgrid central controller (2016) Renew. Sustain. Energy Rev., 55, pp. 338-345
dcterms.bibliographicCitationIbrahim, H., Ilinca, A., Perron, J., Energy storage systems-characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250
dcterms.bibliographicCitationGiraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70
dcterms.bibliographicCitationNikolaidis, P., Poullikkas, A., Cost metrics of electrical energy storage technologies in potential power system operations (2018) Sustain. Energy Technol. Assess., 25, pp. 43-59
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationAly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II: Express Briefs
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171
dcterms.bibliographicCitationShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5
dcterms.bibliographicCitationAli, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled SMES (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051
dcterms.bibliographicCitationLin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907
dcterms.bibliographicCitationSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I Regul. Pap., 61 (7), pp. 2204-2211
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R., Port-hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238
dcterms.bibliographicCitationXu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (superconducting magnetic energy storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384
dcterms.bibliographicCitationIEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1 (2014), pp. 1-16. , IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003)
dcterms.bibliographicCitationBierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.est.2018.05.020
dc.subject.keywordsActive and reactive power compensation
dc.subject.keywordsBilinear proportional-integral control
dc.subject.keywordsDc–dc chopper
dc.subject.keywordsPower ac microgrids
dc.subject.keywordsSuperconducting magnetic energy storage
dc.subject.keywordsVoltage source converter
dc.subject.keywordsChoppers (circuits)
dc.subject.keywordsControllers
dc.subject.keywordsElectric energy storage
dc.subject.keywordsElectric power utilization
dc.subject.keywordsEnergy resources
dc.subject.keywordsMagnetic storage
dc.subject.keywordsMATLAB
dc.subject.keywordsReactive power
dc.subject.keywordsRobustness (control systems)
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsTwo term control systems
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsDC choppers
dc.subject.keywordsMicro grid
dc.subject.keywordsProportional-integral control
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsVoltage source converters
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.