Mostrar el registro sencillo del ítem
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach
dc.creator | Gil-González W. | |
dc.creator | Montoya O.D. | |
dc.date.accessioned | 2020-03-26T16:32:32Z | |
dc.date.available | 2020-03-26T16:32:32Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Journal of Energy Storage; Vol. 18, pp. 459-466 | |
dc.identifier.issn | 2352152X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8872 | |
dc.description.abstract | A bilinear proportional-integral (PI) controller based on passivity-based formulations for integrating superconducting magnetic energy storage (SMES) devices to power ac microgrids is proposed in this paper. A cascade connection between a dc–dc chopper and a voltage source converter is made to integrate the SMES system. The proposed controller guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. This controller exploits the well-known advantages of the proportional-integral (PI) actions via passivation theory. Active and reactive power compensation in the ac system through the SMES integration is proposed as the control objective. To achieve this goal, a radial ac distribution feeder with high penetration of distributed energy resources and time-varying loads is employed. The effectiveness and the robustness of the proposed bilinear PI controller verified by comparing its dynamical performance to conventional approaches such as conventional PI and feedback controllers. All simulation results are conducted via MATLAB/SIMULINK software by using SimPowerSystem library. © 2018 Elsevier Ltd | eng |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048734479&doi=10.1016%2fj.est.2018.05.020&partnerID=40&md5=548b01271c30eb39f010a06628543217 | |
dc.title | Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach | |
dcterms.bibliographicCitation | Hussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: state of the art (2017) Renew. Sustain. Energy Rev., 71, pp. 12-28 | |
dcterms.bibliographicCitation | Montoya, O.D., Garcs, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912 | |
dcterms.bibliographicCitation | Walker, S.B., van Lanen, D., Mukherjee, U., Fowler, M., Greenhouse gas emissions reductions from applications of power-to-gas in power generation (2017) Sustain. Energy Technol. Assess., 20, pp. 25-32 | |
dcterms.bibliographicCitation | Keyhani, A., Design of Smart Power Grid Renewable Energy Systems (2016), John Wiley & Sons | |
dcterms.bibliographicCitation | Katiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A., Microgrids management (2008) IEEE Power Energy Mag., 6 (3) | |
dcterms.bibliographicCitation | Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927 | |
dcterms.bibliographicCitation | Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380 | |
dcterms.bibliographicCitation | Kaur, A., Kaushal, J., Basak, P., A review on microgrid central controller (2016) Renew. Sustain. Energy Rev., 55, pp. 338-345 | |
dcterms.bibliographicCitation | Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems-characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250 | |
dcterms.bibliographicCitation | Giraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70 | |
dcterms.bibliographicCitation | Nikolaidis, P., Poullikkas, A., Cost metrics of electrical energy storage technologies in potential power system operations (2018) Sustain. Energy Technol. Assess., 25, pp. 43-59 | |
dcterms.bibliographicCitation | Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271 | |
dcterms.bibliographicCitation | Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494 | |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II: Express Briefs | |
dcterms.bibliographicCitation | Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150 | |
dcterms.bibliographicCitation | Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5 | |
dcterms.bibliographicCitation | Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled SMES (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051 | |
dcterms.bibliographicCitation | Lin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95 | |
dcterms.bibliographicCitation | Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907 | |
dcterms.bibliographicCitation | Sanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I Regul. Pap., 61 (7), pp. 2204-2211 | |
dcterms.bibliographicCitation | Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119 | |
dcterms.bibliographicCitation | Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R., Port-hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238 | |
dcterms.bibliographicCitation | Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (superconducting magnetic energy storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384 | |
dcterms.bibliographicCitation | IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1 (2014), pp. 1-16. , IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003) | |
dcterms.bibliographicCitation | Bierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.est.2018.05.020 | |
dc.subject.keywords | Active and reactive power compensation | |
dc.subject.keywords | Bilinear proportional-integral control | |
dc.subject.keywords | Dc–dc chopper | |
dc.subject.keywords | Power ac microgrids | |
dc.subject.keywords | Superconducting magnetic energy storage | |
dc.subject.keywords | Voltage source converter | |
dc.subject.keywords | Choppers (circuits) | |
dc.subject.keywords | Controllers | |
dc.subject.keywords | Electric energy storage | |
dc.subject.keywords | Electric power utilization | |
dc.subject.keywords | Energy resources | |
dc.subject.keywords | Magnetic storage | |
dc.subject.keywords | MATLAB | |
dc.subject.keywords | Reactive power | |
dc.subject.keywords | Robustness (control systems) | |
dc.subject.keywords | Superconducting magnets | |
dc.subject.keywords | Two term control systems | |
dc.subject.keywords | Active and Reactive Power | |
dc.subject.keywords | DC choppers | |
dc.subject.keywords | Micro grid | |
dc.subject.keywords | Proportional-integral control | |
dc.subject.keywords | Superconducting magnetic energy storages | |
dc.subject.keywords | Voltage source converters | |
dc.subject.keywords | Electric power system control | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira. | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 56919564100 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.