Mostrar el registro sencillo del ítem

dc.creatorCañate P.
dc.creatorRamirez E.
dc.creatorSudarsky D.
dc.date.accessioned2020-03-26T16:32:32Z
dc.date.available2020-03-26T16:32:32Z
dc.date.issued2018
dc.identifier.citationJournal of Cosmology and Astroparticle Physics; Vol. 2018, Núm. 8
dc.identifier.issn14757516
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8871
dc.description.abstractIn this work we extend the results of [1] where, Semiclassical Selfconsistent Configurations (SSC) formalism was introduced. The scheme combines quantum field theory on a background space-time, semiclassical treatment of gravitation and spontaneous collapse theories. The approach is applied to the context of early universe cosmology using a formal description of the transition from an initial inflationary stage characterized by a spatially homogeneous and isotropic (H&I) universe, to another where inhomogeneities are present in association with quantum fluctuations of the field driving inflation. In that work two constructions are produced. One of them describes a universe that is completely spatially homogeneous and isotropic, and the other is characterized by a slight excitation of the particular inhomogeneous and anisotropic perturbation. Finally, a characterization of their gluing to each other is provided as representing the transition as a result from a spontaneous collapse of the state of the quantum field, following the hypothesis originally introduced in [2]. Specifically, in [1] this construction is carried out by using cosmological perturbation theory and working up to linear order in the perturbation. However, given the nonlinear nature of gravitation, we should in principle explore the application of the formalism in a nonlinear regime. To this end and as a first step, we study in this work the transition from a spatially homogeneous and isotropic (H&I) Semiclassical Self-Consistent Configuration (SSC-I) to one SSC-II that is not spatially (H&I), working this time up to second order in perturbation theory. We find that the self consistent construction now requires consideration of the so called tensor modes, as well as a nontrivial mixing of modes that made the analysis much more difficult and which could not a priori be warranted to work out in detail. The present work shows that this is indeed the case. © 2018 IOP Publishing Ltd and Sissa Medialab.eng
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología: 101712 IG100316
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053141793&doi=10.1088%2f1475-7516%2f2018%2f08%2f043&partnerID=40&md5=4fb3da2fb08736e4ad52d8b86352083c
dc.titleSemiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction
dcterms.bibliographicCitationDiez-Tejedor, A., Sudarsky, D., Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure (2012) J. Cosmol. Astropart. Phys., 2012 (7), p. 045. , 2012 [1108.4928]
dcterms.bibliographicCitationPerez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Class. Quant. Grav., 23 (7), p. 2317. , https://doi.org/10.1088/0264-9381/23/7/008, [gr-qc/0508100]
dcterms.bibliographicCitationWheeler, J.A., Superspace and the nature of quantum geometrodynamics (1968) Battelle Rencontres: 1967 Lectures in MAthematics and Physics, pp. 284-289. , C.M. de Witt and eds., W.A. Benjamin, New York esp
dcterms.bibliographicCitationRovelli, C., (2007) Quantum Gravity, p. 484. , Cambridge University Press, Cambridge, U.K
dcterms.bibliographicCitationCarlip, S., Is Quantum Gravity Necessary? (2008) Class. Quant. Grav., 25 (15), p. 154010. , https://doi.org/10.1088/0264-9381/25/15/154010, [0803.3456]
dcterms.bibliographicCitationPage, D.N., Geilker, C.D., Indirect Evidence for Quantum Gravity (1981) Phys. Rev. Lett., 47, p. 979. , https://doi.org/10.1103/PhysRevLett.47.979
dcterms.bibliographicCitationGambini, R., Pullin, J., Nonstandard optics from quantum space-time (1999) Phys. Rev., 59, p. 124021. , https://doi.org/10.1103/PhysRevD.59.124021, [gr-qc/9809038]
dcterms.bibliographicCitationKozameh, C.N., Parisi, M.F., Lorentz invariance and the semiclassical approximation of loop quantum gravity (2004) Class. Quant. Grav., 21 (11), p. 2617. , https://doi.org/10.1088/0264-9381/21/11/007, [gr-qc/0310014]
dcterms.bibliographicCitationAlfaro, J., Morales-Tecotl, H.A., Urrutia, L.F., Quantum gravity and spin 1/2 particles effective dynamics (2002) Phys. Rev., 66, p. 124006. , https://doi.org/10.1103/PhysRevD.66.124006, [hep-th/0208192]
dcterms.bibliographicCitationCollins, J., Pérez, A., Sudarsky, D., Urrutia, L., Vucetich, H., Lorentz invariance and quantum gravity: An additional fine-tuning problem? (2004) Phys. Rev. Lett., 93, p. 191301. , https://doi.org/10.1103/PhysRevLett.93.191301, [gr-qc/0403053]
dcterms.bibliographicCitationPearle, P.M., Combining Stochastic Dynamical State Vector Reduction with Spontaneous Localization (1989) Phys. Rev., 39, p. 2277. , https://doi.org/10.1103/PhysRevA.39.2277
dcterms.bibliographicCitationPearle, P., How Stands Collapse i (2006) J. Phys., 40, p. 3189. , [quant-ph/0611211]
dcterms.bibliographicCitationGhirardi, G.C., Pearle, P.M., Rimini, A., Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles (1990) Phys. Rev., 42, p. 78. , https://doi.org/10.1103/PhysRevA.42.78
dcterms.bibliographicCitationPenrose, R., On gravity's role in quantum state reduction (1996) Gen. Rel. Grav., 28, p. 581. , https://doi.org/10.1007/BF0210506828581
dcterms.bibliographicCitationPenrose, R., (1989) The Emperor's New Mind, , Oxford University Press
dcterms.bibliographicCitationCañate, P., Pearle, P., Sudarsky, D., Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation (2013) Phys. Rev., 87, p. 104024. , https://doi.org/10.1103/PhysRevD.87.104024, [1211.3463]
dcterms.bibliographicCitationDe Unánue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev., 78, p. 043510. , https://doi.org/10.1103/PhysRevD.78.043510, [0801.4702]
dcterms.bibliographicCitationLeón, G., Sudarsky, D., The Slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: Contrasts and similarities of standard account and the 'collapse scheme' (2010) Class. Quant. Grav., 27 (22), p. 225017. , https://doi.org/10.1088/0264-9381/27/22/225017, [1003.5950]
dcterms.bibliographicCitationSudarsky, D., The Seeds of Cosmic structure as a door to New Physics (2007) J. Phys. Conf. Ser., 68 (1), p. 012029. , https://doi.org/10.1088/1742-6596/68/1/012029, [gr-qc/0612005]
dcterms.bibliographicCitationSudarsky, D., A path towards quantum gravity phenomenology (2007) J. Phys. Conf. Ser., 66 (1), p. 012037. , https://doi.org/10.1088/1742-6596/66/1/012037
dcterms.bibliographicCitationSudarsky, D., A Signature of quantum gravity at the source of the seeds of cosmic structure? (2007) J. Phys. Conf. Ser., 67 (1), p. 012054. , https://doi.org/10.1088/1742-6596/67/1/012054, [gr-qc/0701071]
dcterms.bibliographicCitationSudarsky, D., The Seeds of Cosmic Structures As A Door to Quantum Gravity Phenomena, , POS(QG-PH)038 [0712.2795]
dcterms.bibliographicCitationLandau, S., León, G., Sudarsky, D., Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics (2013) Phys. Rev., 88, p. 023526. , https://doi.org/10.1103/PhysRevD.88.023526, [1107.3054]
dcterms.bibliographicCitationKiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, p. 164. , https://doi.org/10.1166/asl.2009.1023, [0810.0087]
dcterms.bibliographicCitationSudarsky, D., Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical (2011) Int. J. Mod. Phys., 20, p. 509. , https://doi.org/10.1142/S0218271811018937, [0906.0315]
dcterms.bibliographicCitationAlbrecht, A., Ferreira, P., Joyce, M., Prokopec, T., Inflation and squeezed quantum states (1994) Phys. Rev., 50, p. 4807. , https://doi.org/10.1103/PhysRevD.50.4807, [astro-ph/9303001]
dcterms.bibliographicCitationPolarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Class. Quant. Grav., 13 (3), p. 377. , https://doi.org/10.1088/0264-9381/13/3/006, [gr-qc/9504030]
dcterms.bibliographicCitationWeinberg, S., (2008) Cosmology, , Oxford University Press
dcterms.bibliographicCitationMukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University Press
dcterms.bibliographicCitationHollands, S., Wald, R.M., An Alternative to inflation (2002) Gen. Rel. Grav., 34, p. 2043. , https://doi.org/10.1023/A:1021175216055, [gr-qc/0205058]
dcterms.bibliographicCitationBengochea, G.R., Cañate, P., Sudarsky, D., Inhomogeneities from quantum collapse scheme without inflation (2015) Phys. Lett., 743, p. 484. , https://doi.org/10.1016/j.physletb.2015.03.016, [1410.4212]
dcterms.bibliographicCitationBardeen, J.M., Gauge Invariant Cosmological Perturbations (1980) Phys. Rev., 22, p. 1882. , https://doi.org/10.1103/PhysRevD.22.1882
dcterms.bibliographicCitationDiez-Tejedor, A., León, G., Sudarsky, D., The Collapse of the wave function in the joint metric-matter quantization for inflation (2012) Gen. Rel. Grav., 44, p. 2965. , https://doi.org/10.1007/s10714-012-1433-5, [1106.1176]
dcterms.bibliographicCitationMartin, J., Vennin, V., Peter, P., Cosmological Inflation and the Quantum Measurement Problem (2012) Phys. Rev., 86, p. 103524. , https://doi.org/10.1103/PhysRevD.86.103524, [1207.2086]
dcterms.bibliographicCitationDas, S., Lochan, K., Sahu, S., Singh, T.P., Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism (2013) Phys. Rev., 88, p. 085020. , https://doi.org/10.1103/PhysRevD.89.109902, [1304.5094]
dcterms.bibliographicCitationBassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H., Models of Wave-function Collapse, Underlying Theories and Experimental Tests (2013) Rev. Mod. Phys., 85, p. 471. , https://doi.org/10.1103/RevModPhys.85.471, [1204.4325]
dcterms.bibliographicCitationOkon, E., Sudarsky, D., Benefits of Objective Collapse Models for Cosmology and Quantum Gravity (2014) Found. Phys., 44, p. 114. , https://doi.org/10.1007/s10701-014-9772-6, [1309.1730]
dcterms.bibliographicCitationCastagnino, M., Fortin, S., Laura, R., Sudarsky, D., Interpretations of Quantum Theory in the Light of Modern Cosmology (2017) Found. Phys., 47, p. 1387. , https://doi.org/10.1007/s10701-017-0100-9, [1412.7576]
dcterms.bibliographicCitationWald, R.M., (1984) General Relativity, p. 506. , University of Chicago Press
dcterms.bibliographicCitationDiósi, L., Gravitation and quantummechanical localization of macroobjects (1984) Phys. Lett., 105, p. 199. , https://doi.org/10.1016/0375-9601(84)90397-9, [1412.0201]
dcterms.bibliographicCitationVan Meter, J.R., Schrödinger-Newton 'collapse' of the wave function (2011) Class. Quant. Grav., 28 (21), p. 215013. , https://doi.org/10.1088/0264-9381/28/21/215013, [1105.1579]
dcterms.bibliographicCitationBedingham, D.J., Relativistic State Reduction Dynamics (2011) Found Phys., 41 (4), p. 686. , [1003.2772]
dcterms.bibliographicCitationBedingham, D.J., Relativistic state reduction model (2011) J. Phys. Conf. Ser., 306 (1). , [1103.3974]
dcterms.bibliographicCitationPearle, P., Collapse models (1999) Open Systems and Measurement in Relativistic Quantum Theory, 526, p. 195. , H.P. Breuer and F. Petruccione eds., Lect. Notes Phys., Springer, Berlin, Heidelberg
dcterms.bibliographicCitationPearle, P., How Stands Collapse II (2007) J. Phys., 40, p. 3189. , [quant-ph/0611212]
dcterms.bibliographicCitationMyrvold, W.C., On peaceful coexistence: Is the collapse postulate incompatible with relativity? (2002) Stud. Hist. Phil. Mod. Phys., 33, p. 435
dcterms.bibliographicCitationTumulka, R., A relativistic version of the Ghirardi-Rimini-Weber model (2006) J. Stat. Phys., 125, p. 821
dcterms.bibliographicCitationPearle, P., Relativistic dynamical collapse model (2015) Phys. Rev., 91, p. 105012. , https://doi.org/10.1103/PhysRevD.91.105012, [1412.6723]
dcterms.bibliographicCitationBedingham, D., Modak, S.K., Sudarsky, D., Relativistic collapse dynamics and black hole information loss (2016) Phys. Rev., 94, p. 045009. , https://doi.org/10.1103/PhysRevD.94.045009, [1604.06537]
dcterms.bibliographicCitationIsrael, W., Singular hypersurfaces and thin shells in general relativity (1966) Nuovo Cim., 4410, p. 1. , https://doi.org/10.1007/BF02710419B44S101, [Erratum ibid B 48 (1967) 463]
dcterms.bibliographicCitationJuárez-Aubry, B.A., Kay, B.S., Miramontes, T., Sudarsky, D., On the Initial Value Formulation of Semi-classical Gravity and Theories with Spontaneous Reduction of the Quantum State, , preparation
dcterms.bibliographicCitationCañate, P., (2015) Reducción de la Función de Onda en El Contexto Cosmológico y El Surgimiento de Las Inhomogeneidades Primordiales, , Ph.D. Thesis, Universidad Nacional Autoacute
dcterms.bibliographicCitationWald, R.M., Trace Anomaly of a Conformally Invariant Quantum Field in Curved Space-Time (1978) Phys. Rev., 17, p. 1477. , https://doi.org/10.1103/PhysRevD.17.1477
dcterms.bibliographicCitationWald, R.M., (1994) Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, , University Chicago Press, Chicago
dcterms.bibliographicCitationDecanini, Y., Folacci, A., Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension (2008) Phys. Rev., 78, p. 044025. , https://doi.org/10.1103/PhysRevD.78.044025, [gr-qc/0512118]
dcterms.bibliographicCitationJuárez-Aubry, B.A., Kay, B.S., Sudarsky, D., Generally covariant dynamical reduction models and the Hadamard condition (2018) Phys. Rev., 97, p. 025010. , https://doi.org/10.1103/PhysRevD.97.025010, [1708.09371]
dcterms.bibliographicCitationrez Aubry, private communication
dcterms.bibliographicCitationStewart, J.M., Walker, M., Perturbations of space-times in general relativity (1974) Proc. Roy. Soc. Lond., 34, p. 49
dcterms.bibliographicCitationBertschinger, E., Cosmological Dynamics: Course 1 (1993) Proceedings, les Houches Summer School on Cosmology and Large Scale Structure (Session 60), pp. 273-348. , Les Houches, France, August 1-28, 1993, pp. [astro-ph/9503125]
dcterms.bibliographicCitationMukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rept., 215, p. 203. , https://doi.org/10.1016/0370-1573(92)90044-Z
dcterms.bibliographicCitationMalik, K.A., Wands, D., Cosmological perturbations (2009) Phys. Rept., 475, p. 1. , https://doi.org/10.1016/j.physrep.2009.03.001, [0809.4944]
dcterms.bibliographicCitationNakamura, K., Gauge invariant variables in two parameter nonlinear perturbations (2003) Prog. Theor. Phys., 110, p. 723. , https://doi.org/10.1143/PTP.110.723, [gr-qc/0303090]
dcterms.bibliographicCitationAcquaviva, V., Bartolo, N., Matarrese, S., Riotto, A., Second order cosmological perturbations from inflation (2003) Nucl. Phys., 667, p. 119. , https://doi.org/10.1016/S0550-3213(03)00550-9, [astro-ph/0209156]
dcterms.bibliographicCitationNakamura, K., Second-order Gauge-Invariant Cosmological Perturbation Theory: Current Status (2010) Adv. Astron., 2010, p. 576273. , https://doi.org/10.1155/2010/5762732010576273, [1001.2621]
dcterms.bibliographicCitationNakamura, K., Consistency of Equations for the Single Scalar Field Case in Second-order Gauge-invariant Cosmological Perturbation Theory, , [1001.4338]
dcterms.bibliographicCitationNakamura, K., Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables (2007) Prog. Theor. Phys., 117, p. 17. , https://doi.org/10.1143/PTP.117.17, [gr-qc/0605108]
dcterms.bibliographicCitationLeón, G., Majhi, A., Okon, E., Sudarsky, D., Reassessing the link between B-modes and inflation (2017) Phys. Rev., 96, p. 101301. , https://doi.org/10.1103/PhysRevD.96.101301, [1607.03523]
dcterms.bibliographicCitationLeón, G., Majhi, A., Okón, E., Sudarsky, D., Expectation of primordial gravity waves generated during inflation (2018) Phys. Rev., 98, p. 023512. , https://doi.org/10.1103/PhysRevD.98.023512, [1712.02435]
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1088/1475-7516/2018/08/043
dc.subject.keywordsInflation
dc.subject.keywordsPrimordial gravitational waves (theory)
dc.subject.keywordsQuantum field theory on curved space
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesDS acknowledges partial financial support from DGAPA-UNAM project IG100316 and by CONACyT project 101712, as well as the sabbatical fellowship from CO-MEX-US (Fullbright-Garcia Robles) and from DGAPA-UNAM (Paspa). ER is grateful to FAPEMIG for supporting her visit in 2016 to the Federal University of Juiz de Fora, MG, Brazil, where part of this work was done.
dc.type.spaArtículo
dc.identifier.orcid55744418600
dc.identifier.orcid8840673300
dc.identifier.orcid7003779083


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.