Show simple item record

Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

dc.creatorBesharat M.
dc.creatorCoronado-Hernández O.E.
dc.creatorFuertes-Miquel V.S.
dc.creatorViseu M.T.
dc.creatorRamos H.M.
dc.identifier.citationUrban Water Journal; Vol. 15, Núm. 8; pp. 769-779
dc.description.abstractThe prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.eng
dc.description.sponsorshipFundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia: PD/BD/114459/2016
dc.format.mediumRecurso electrónico
dc.publisherTaylor and Francis Ltd.
dc.titleBackflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
dcterms.bibliographicCitationANSYS FLUENT R19.0. 2018. Academic [Computer Software]. Canonsburg, PA: ANSYS
dcterms.bibliographicCitationBenjamin, T.B., Gravity Currents and Related Phenomena (1968) Journal Fluid Mechanisms, 31 (2), pp. 209-248
dcterms.bibliographicCitationBesharat, M., Ramos, H.M., Theorical and Experimental Analysis of Pressure Surge in a Two-Phase Compressed Air Vessel (2015) 12th International Conference on Pressure Surges, pp. 729-744. , Dublin: BHR Group, Ireland, and
dcterms.bibliographicCitationBesharat, M., Viseu, M.T., Ramos, H.M., Experimental Study of Air Vessel Sizing to either Store Energy or Protect the System in the Water Hammer Occurrence (2017) Water, 9 (1), p. 63
dcterms.bibliographicCitationBesharat, M., Tarinejad, R., Ramos, H.M., The Effect of Water Hammer on a Confined Air Pocket Towards Flow Energy Storage System (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126
dcterms.bibliographicCitationBesharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Manage, 30 (8), pp. 2687-2702
dcterms.bibliographicCitationBowker, R.P.G., Audibert, G.A., Shah, H.J., Webster, N.A., (1992) Detection, Control, and Correction of Hydrogen Sulfide Corrosion in Existing Wastewater Systems, Office of Wastewater Enforcement and Compliance, , Washington, DC: Office of Water
dcterms.bibliographicCitationCebeci, T., (2004) Turbulence Models and Their Applications, , Horizons Pub. Inc., Springer, Long Beach, California
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), p. 98
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water Journal, 15. , accepted
dcterms.bibliographicCitationEdmunds, R.C., Air Binding in Pipes (1979) Journal American Water Works Associ, 71 (5), pp. 273-277
dcterms.bibliographicCitationEscarameia, M., Investigating Hydraulic Removal of Air from Water Pipelines (2007) Proceedings Institute Civ Engineering Water Manage, 160 (1), pp. 25-34
dcterms.bibliographicCitationIzquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline Start-Up with Entrapped Air (1999) Journal Hydraul Researcher, 37 (5), pp. 579-590
dcterms.bibliographicCitationKader, B., Temperature and Concentration Profiles in Fully Turbulent Boundary Layers (1981) International Journal of Heat Mass Transfer, 24 (9), pp. 1541-1544
dcterms.bibliographicCitationLaanearu, J., Hou, D.Q., Tijsseling, A.S., Experimental and Analytical Study of the Air-Water Interface Kinematics during Filling and Emptying of a Horizontal Pipeline (2015) 12th Int. Conf. on Pressure Surges, pp. 625-637. , Dublin: BHR Group, Ireland, and
dcterms.bibliographicCitationLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., Tijsseling, A.S., van’t Westende, J.M.C., Emptying of Large-Scale Pipeline by Pressurized Air (2012) Journal Hydraul Engineering, 138 (12), pp. 1090-1100
dcterms.bibliographicCitationLaunder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence (1972) Academic Press, , London, England
dcterms.bibliographicCitationLeón, A., Ghidaoui, M., Schmidt, A., Garcia, M., A Robust Two-Equation Model for Transient-Mixed Ows (2010) Journal Hydraul Researcher, 48 (1), pp. 44-56
dcterms.bibliographicCitationMartins, N., Delgado, J., Ramos, H.M., Covas, D., Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model (2017) Journal Hydraul Researcher, 55 (4), pp. 506-519
dcterms.bibliographicCitationMartins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal Hydraul Researcher, 53 (5), pp. 678-686
dcterms.bibliographicCitationPozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A., Air Entrapped in Gravity Pipeline Systems (2010) Journal Hydraul Researcher, 48 (3), pp. 338-347
dcterms.bibliographicCitationRamezani, L., Karney, B., Malekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal Water Resources Planning Manage, 142 (12), pp. 1-11
dcterms.bibliographicCitationRichards, R.T., Air Binding in Water Pipelines (1962) Journal AWWA, 68 (6), pp. 719-730
dcterms.bibliographicCitationTijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal Pressure Vessel Technological, 138, p. 031301
dcterms.bibliographicCitationTriki, A., Water-Hammer Control in Pressurized-Pipe Flow Using an In-Line Polymeric Short-Section (2016) Acta Mechanica, 227, pp. 777-793
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal Hydraul Engineering, 134 (7), pp. 984-992
dcterms.bibliographicCitationWang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., Xu, C., CFD Approach for Column Separation in Water Pipelines (2016) Journal Hydraul Engineering, 142 (10), pp. 1-11
dcterms.bibliographicCitationWilcox, D.C., (2006) Turbulence Modeling for CFD, , 3rd ed, DCW Industries, Inc., La Cañada, California
dcterms.bibliographicCitationWisner, P.E., Mohsen, F.N., Kouwen, N., Removal of Air from Water Lines by Hydraulic Means (1975) Journal Hydraulics Division, 101 (HY2), pp. 243-257
dcterms.bibliographicCitationZhou, F., Hicks, M., Steffler, P.M., Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air (2002) Journal Hydraul Engineering, 128 (6), pp. 625-634
dcterms.bibliographicCitationZhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal Hydraul Engineering, 139 (9), pp. 949-959
dcterms.bibliographicCitationZhou, L., Liu, D., Ou, C., Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model (2011) Engineering Applications Comparative Fluid Mechanisms, 5 (1), pp. 127-140
dcterms.bibliographicCitationZhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S., Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline (2018) Journal Hydraul Engineering, 144 (8), p. 04018045
dcterms.bibliographicCitationZukoski, E.E., Influence of Viscosity, Surface Tension, and Inclination Angle on Motion of Long Bubbles in Closed Tubes (1966) Journal Fluid Mechanisms, 25 (4), pp. 821-837
dc.subject.keywordsBackflow air
dc.subject.keywordsEmptying process
dc.subject.keywordsTransient two-phase flow
dc.subject.keywordsComputational fluid dynamics
dc.subject.keywordsComputer simulation
dc.subject.keywordsPressure effect
dc.subject.keywordsTransient flow
dc.subject.keywordsTwo phase flow
dc.subject.keywordsTwo-dimensional flow
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors acknowledge the support of the Civil Engineering, Research, and Innovation for Sustainability centre (CERIS) from Instituto Superior Técnico, University of Lisbon, Portugal, for providing the experimental apparatus and the financial support by Fundação para a Ciência e a Tecnologia (FCT), Portugal. Also, the authors want to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014–2020.
dc.description.notesThis work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016.

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as