Show simple item record

dc.creatorMontoya O.D.
dc.creatorGrisales-Noreña L.F.
dc.creatorGonzález-Montoya D.
dc.creatorRamos-Paja C.A.
dc.creatorGarces A.
dc.identifier.citationElectric Power Systems Research; Vol. 163, pp. 375-381
dc.description.abstractThis paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative conditions. The proposed approach provides an explicit solution of the power flow equations system, which avoids the use of iterative methods. Such a characteristic enables to provide accurate results with very short processing times when real operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those simulations were performed using C++ and MATLAB, which are programming environments commonly adopted to solve power flows. © 2018 Elsevier B.V.eng
dc.description.sponsorshipUniversidad Nacional de Colombia Universidad Tecnológica Nacional Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: P-17211, UNAL-ITM-39823
dc.format.mediumRecurso electrónico
dc.publisherElsevier Ltd
dc.titleLinear power flow formulation for low-voltage DC power grids
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electr. Power Syst. Res., 119, pp. 407-417
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationSreedharan, P., Farbes, J., Cutter, E., Woo, C.K., Wang, J., Microgrid and renewable generation integration: University of California, San Diego (2016) Appl. Energy, 169, pp. 709-720
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationGarces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31, pp. 827-828
dcterms.bibliographicCitationMachado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Trans. Circuits Syst. I: Regul. Pap., 64, pp. 2772-2782
dcterms.bibliographicCitationDragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids – Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31, pp. 4876-4891
dcterms.bibliographicCitationIEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems, IEEE Std 1547.4-2011 (2011), pp. 1-54
dcterms.bibliographicCitationJusto, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: a review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405
dcterms.bibliographicCitationBelkhayat, M., Cooley, R., Abed, E.H., Stability and dynamics of power systems with regulated converters (1995) 1995 IEEE International Symposium on Circuits and Systems, 1995, ISCAS ‘95, vol. 1, pp. 143-145
dcterms.bibliographicCitationRouzbehi, K., Miranian, A., Luna, A., Rodriguez, P., DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy (2014) IEEE J. Emerg. Sel. Top. Power Electron., 2, pp. 1171-1180
dcterms.bibliographicCitationMa, J., Yuan, L., Zhao, Z., He, F., Transmission loss optimization-based optimal power flow strategy by hierarchical control for dc microgrids (2017) IEEE Trans. Power Electron., 32, pp. 1952-1963
dcterms.bibliographicCitationGarces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationBuire, J., Guillaud, X., Colas, F., Dieulot, J.Y., Alvaro, L.D., Combination of linear power flow tools for voltages and power estimation on MV networks (2017) CIRED Open Access Proc. J., 2017, pp. 2157-2160
dcterms.bibliographicCitationMaknouninejad, A., Qu, Z., Lewis, F.L., Davoudi, A., Optimal, nonlinear, and distributed designs of droop controls for DC microgrids (2014) IEEE Trans. Smart Grid, 5, pp. 2508-2516
dcterms.bibliographicCitationFrank, S., Steponavice, I., Rebennack, S., Optimal power flow: a bibliographic survey II (2012) Energy Syst., 3, pp. 259-289
dcterms.bibliographicCitationGandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renew. Energy, 111, pp. 275-283
dcterms.bibliographicCitationKumar, Y.V.P., Bhimasingu, R., Electrical machines based dc/ac energy conversion schemes for the improvement of power quality and resiliency in renewable energy microgrids (2017) Int. J. Electr. Power Energy Syst., 90, pp. 10-26
dcterms.bibliographicCitationMeng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M., Review on control of dc microgrids and multiple microgrid clusters (2017) IEEE J. Emerg. Sel. Top. Power Electron., 5, pp. 928-948
dcterms.bibliographicCitationLi, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8, pp. 2754-2764
dcterms.bibliographicCitationHuang, S., Wu, Q., Zhao, H., Liu, Z., Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables (2016) Energy Proc., 100, pp. 1-7. , 3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8–10 September 2016, Kitakyushu, Japan
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Garces et al., 2016 (2016) Optimal power flow in multiterminal hvdc systems considering dc/dc converters, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I: Regul. Pap., 63, pp. 114-121
dcterms.bibliographicCitationde Moura, A.P., de Moura, A.A., Oliveira, D., Fernandes, E., Linear power flow V-theta (2012) Electr. Power Syst. Res., 84, pp. 45-57
dcterms.bibliographicCitationWang, Y., Zhang, N., Li, H., Yang, J., Kang, C., Linear three-phase power flow for unbalanced active distribution networks with pv nodes (2017) CSEE J. Power Energy Syst., 3, pp. 321-324
dcterms.bibliographicCitationHörsch, J., Ronellenfitsch, H., Witthaut, D., Brown, T., Linear optimal power flow using cycle flows (2018) Electr. Power Syst. Res., 158, pp. 126-135
dcterms.bibliographicCitationDi Fazio, A.R., Russo, M., Valeri, S., De Santis, M., Linear method for steady-state analysis of radial distribution systems (2018) Int. J. Electr. Power Energy Syst., 99, pp. 744-755
dcterms.bibliographicCitationMarti, J., Ahmadi, H., Bashualdo, L., Linear power flow formulation based on a voltage-dependent load model (2014) 2014 IEEE PES General Meeting – Conference Exposition, p. 1
dcterms.bibliographicCitationZhang, H., Vittal, V., Heydt, G.T., Quintero, J., A relaxed ac optimal power flow model based on a Taylor series (2013) 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 1-5
dcterms.bibliographicCitationWang, W., Barnes, M., Power flow algorithms for multi-terminal VSC-HVDC with droop control (2014) IEEE Trans. Power Syst., 29, pp. 1721-1730
dcterms.bibliographicCitationLuo, Z.Q., Ma, W.K., So, A.M.C., Ye, Y., Zhang, S., Semidefinite relaxation of quadratic optimization problems (2010) IEEE Signal Process. Mag., 27, pp. 20-34
dcterms.bibliographicCitationGuimaraes, D.A., Floriano, G.H.F., Chaves, L.S., A tutorial on the CVX system for modeling and solving convex optimization problems (2015) IEEE Latin Am. Trans., 13, pp. 1228-1257
dcterms.bibliographicCitationHuang, G., Ongsakul, W., Managing the bottlenecks in parallel Gauss–Seidel type algorithms for power flow analysis (1994) IEEE Trans. Power Syst., 9, pp. 677-684
dcterms.bibliographicCitationZeng, J., Lin, J., Wang, Z., An improved Gauss–Seidel algorithm and its efficient architecture for massive mimo systems (2018) IEEE Trans. Circuits Syst. II: Express Briefs, p. 1
dcterms.bibliographicCitationAbdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and microgrids (2017) Renew. Sustain. Energy Rev., 71, pp. 742-766
dcterms.bibliographicCitationZhou, E.Z., Object-oriented programming, C++ and power system simulation (1996) IEEE Trans. Power Syst., 11, pp. 206-215
dcterms.bibliographicCitationPandit, S., Soman, S.A., Khaparde, S.A., Design of generic direct sparse linear system solver in C++ for power system analysis (2001) IEEE Trans. Power Syst., 16, pp. 647-652
dcterms.bibliographicCitationRebizant, W., Solak, K., Brusilowicz, B., Benysek, G., Kempski, A., Rusinski, J., Coordination of overcurrent protection relays in networks with superconducting fault current limiters (2018) Int. J. Electr. Power Energy Syst., 95, pp. 307-314
dc.subject.keywordsConvex approximation
dc.subject.keywordsLinear approximation
dc.subject.keywordsLow-voltage dc power grids
dc.subject.keywordsNonlinear power flow equations
dc.subject.keywordsTaylor's series expansion
dc.subject.keywordsC++ (programming language)
dc.subject.keywordsElectric load flow
dc.subject.keywordsIterative methods
dc.subject.keywordsNonlinear equations
dc.subject.keywordsNumerical methods
dc.subject.keywordsTaylor series
dc.subject.keywordsConvex approximation
dc.subject.keywordsLinear approximations
dc.subject.keywordsLow voltages
dc.subject.keywordsNonlinear power flow
dc.subject.keywordsTaylor's series expansion
dc.subject.keywordsElectric power transmission networks
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported by Universidad Tecnológica de Bolivar , Universidad Tecnológica de Pereira , Instituto Tecnológico Metropolitano , Universidad Nacional de Colombia and COLCIENCIAS under the research projects P-17211 and UNAL-ITM-39823 and the Doctoral Scholarship 727-2015. Moreover, this work was also supported by the PhD program in Engineering of the Universidad Tecnológica de Pereira and the Ph.D. program “Doctorado en Ingeniería – Línea de Investigación en Automática” of the Universidad Nacional de Colombia.

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.