Show simple item record

dc.creatorMontoya O.D.
dc.creatorGil-Gonzalez W.
dc.creatorFwjgil@utp.edu.co
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.issued2018
dc.identifier.citationProceedings of the 2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA 2018
dc.identifier.isbn9781538658444
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8863
dc.description.abstractThis paper presents an integration of three-phase supercapacitor energy storage (SCES) in power grids via passivity-based control (PBC) theory under different reference frames. The SCES systems have the possibility to interchange active and reactive power between the supercapacitor and converter to the electrical power network. The active power is directly related to the energy stored on the supercapacitor, while the reactive power is redistributed by the forced commutated switches present in the voltage source converter (VSC) used to integrate the SCES system to the power grid. PBC theory allows designing Lyapunov stable controllers for autonomous and non-Autonomous dynamical sys-Tems via port-Hamiltonian (pH) representations. The averaging modeling theory employs to develop the controllers under abc, alpha\beta and dq reference frames. Simulation results show the possibility of using the SCES devices to compensate active and reactive power in power grids dynamically in all operating quadrants. All simulations are conducted via MATLAB/SIMULINK software. © 2018 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government
dc.description.sponsorshipIEEE Peru Section;IEEE Power and Energy Society
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057003249&doi=10.1109%2fTDC-LA.2018.8511707&partnerID=40&md5=b2d9393e44330b95b0dab914a6747753
dc.sourceScopus2-s2.0-85057003249
dc.titleSCES Integration in Power Grids: A PBC Approach under abc, αβ0 and dq0 Reference Frames
dcterms.bibliographicCitationRahbar, K., Chai, C.C., Zhang, R., Energy cooperation optimization in microgrids with renewable energy integration (2018) IEEE Trans. Smart Grid, 9 (2), pp. 1482-1493. , March
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationShang, C., Srinivasan, D., Reindl, T., Economic and environmental generation and voyage scheduling of all-electric ships (2016) IEEE Trans. Power Syst, 31 (5), pp. 4087-4096. , Sept
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonźalez, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II Express Briefs, (99), pp. 1-5
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Delivery, 23 (4), pp. 2097-2104
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19
dcterms.bibliographicCitationGil-Gonźalez, W., Garćes, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingenieŕia y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-Based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst, 31 (5), pp. 3369-3380. , Sept
dcterms.bibliographicCitationYin, H., Zhou, W., Li, M., Ca, M.A., Zhao, C., An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles (2016) IEEE Transactions on Transportation Electrification, 2 (3), pp. 300-311. , Sept
dcterms.bibliographicCitationCanteli, M.M., Fernandez, A.O., Eguiluz, L.I., Estebanez, C.R., Three-phase adaptive frequency measurement based on Clarkes transformation (2006) IEEE Trans. Power Delivery, 21 (3), pp. 1101-1105. , July
dcterms.bibliographicCitationPerko, L., Differential equations dynamical systems ser (2013) Texts in Applied Mathematics Springer New York, , https://books.google.com.co/books?id=VFnSBwAAQBAJ
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-Phase PLLs: A review of recent advances (2017) IEEE Trans. Power Electron, 32 (3), pp. 1894-1907. , March
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/TDC-LA.2018.8511707
dc.subject.keywordsActive and reactive power control
dc.subject.keywordsLyapunov's stability theory
dc.subject.keywordsPassivity-based control theory port-Hamiltonian systems
dc.subject.keywordsSupercapacitor energy storage system
dc.subject.keywordsThree-phase power grids.
dc.subject.keywordsControl theory
dc.subject.keywordsControllers
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsEnergy storage
dc.subject.keywordsHamiltonians
dc.subject.keywordsMATLAB
dc.subject.keywordsPower control
dc.subject.keywordsPower converters
dc.subject.keywordsReactive power
dc.subject.keywordsSupercapacitor
dc.subject.keywordsActive and reactive power controls
dc.subject.keywordsLyapunov's stability theories
dc.subject.keywordsPort-Hamiltonian systems
dc.subject.keywordsPower grids
dc.subject.keywordsSupercapacitor energy storages
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesFINANCIAL SUPPORT This work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.
dc.relation.conferencedate18 September 2018 through 21 September 2018
dc.type.spaConferencia
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.