Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.issued2019
dc.identifier.citationIEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2007-2011
dc.identifier.issn15497747
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8862
dc.description.abstractThis brief presents a general form of designing passivity-based controllers for electrical energy storage systems (EESS) in three-phase microgrids (TP-MGs) under time-domain reference frame. The control strategy proposed in this brief use the Clark's transformation known as αβ reference frame, avoiding to use phase-locked loop systems, which allows improving the dynamical performance in the energy storage devices. Passivity-based control guarantees stable operating conditions in the sense of Lyapunov for each EESS for different grid operation scenarios in the TP-MG. The design of the controllers is made by using passivity-based control (PBC) theory in conjunction to the dynamics of the error approach. A comparison to classical proportional-integral control method is used to show the applicability of the PBC approach presented in this brief. Simulation results are conducted via MATLAB/Simulink software. © 2004-2012 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067621075&doi=10.1109%2fTCSII.2019.2893842&partnerID=40&md5=ebbfc3f65f41375b5a7905d5110eaefd
dc.titleControl for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Stor., 18, pp. 459-466. , Aug
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380. , Sep
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Stor., 16, pp. 259-268. , Apr
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Stor., 16, pp. 250-258. , Apr
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5. , Oct
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (12), pp. 2003-2007. , Dec
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., SCES integration in power grids: A PBC approach under abc, αβ0 and dq0 reference frames (2018) Proc. IEEE PES Transm. Distrib. Conf. Exhibit. Latin America (T&D-LA), pp. 1-5
dcterms.bibliographicCitationCisneros, R., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119. , Oct
dcterms.bibliographicCitationMufti, M.D., Iqbal, S.J., Lone, S.A., Ain, Q., Supervisory adaptive predictive control scheme for supercapacitor energy storage system (2015) IEEE Syst. J., 9 (3), pp. 1020-1030. , Sep
dcterms.bibliographicCitationSingh, B., Shahani, D.T., Verma, A.K., Neural network controlled grid interfaced solar photovoltaic power generation (2014) IET Power Electron., 7 (3), pp. 614-626. , Mar
dcterms.bibliographicCitationKarimipour, D., Salmasi, F.R., Stability analysis of ac microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , Jul
dcterms.bibliographicCitationAvila-Becerril, S., Espinosa-Pérez, G., Fernandez, P., Dynamic characterization of typical electrical circuits via structural properties (2016) Math. Problems Eng., 2016, pp. 1-13. , Jul., Art. no. 7870462
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/TCSII.2019.2893842
dc.subject.keywordsActive and reactive power control
dc.subject.keywordsBilinear structure
dc.subject.keywordsEelectrical energy storage systems
dc.subject.keywordsHamiltonian formulation
dc.subject.keywordsLaypunov's stability
dc.subject.keywordsPassivity-based control theory
dc.subject.keywordsControl theory
dc.subject.keywordsControllers
dc.subject.keywordsElectric power system control
dc.subject.keywordsEnergy storage
dc.subject.keywordsHamiltonians
dc.subject.keywordsMATLAB
dc.subject.keywordsReactive power
dc.subject.keywordsTwo term control systems
dc.subject.keywordsActive and reactive power controls
dc.subject.keywordsDynamical performance
dc.subject.keywordsElectrical energy storage systems
dc.subject.keywordsHamiltonian formulations
dc.subject.keywordsMatlab/Simulink software
dc.subject.keywordsPassivity based control
dc.subject.keywordsPassivity-based controllers
dc.subject.keywordsProportional-integral control
dc.subject.keywordsPower control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesManuscript received December 7, 2018; accepted January 14, 2019. Date of publication January 18, 2019; date of current version December 6, 2019. This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015. This brief was recommended by Associate Editor D. Giaouris. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya is with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.