Show simple item record

Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS

dc.creatorMontoya O.D.
dc.creatorGarrid V.M.
dc.creatorGrisales-Noreña L.F.
dc.creatorGil-González W.
dc.creatorGarces A.
dc.creatorRamos-Paja C.A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.issued2018
dc.identifier.citation2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn9781538678428
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8860
dc.description.abstractThis paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct-current (dc) power grids by using a mixed-integer nonlinear programming (MINLP) formulation. The reduction of the power losses in all branches of the network are considered as the objective function; while the restrictions are the power balance, voltage regulation, maximum penetration and maximum distributed generation units available. The general algebraic modeling system (GAMS) is selected as nonlinear optimizing package to solve this problem; besides, a small numerical example of energy production is introduced to illustrate the usability of using GAMS. Finally, a 21-node dc grid with two ideal generators, and multiple constant power loads, is used as test system. © 2018 IEEE.eng
dc.description.sponsorshipUniversidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI Universidad Tecnológica de Pereira, UTP UNAL-ITM-39823/P17211
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069796375&doi=10.1109%2fEPIM.2018.8756492&partnerID=40&md5=9fa265a155cdfb8e650b5ac623b9caae
dc.titleOptimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for lowvoltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationPlanas, E., Andreu, J., Gárate, J.I., De Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renewable Sustainable Energy Rev., 43, pp. 726-749
dcterms.bibliographicCitationJusto, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renewable Sustainable Energy Rev., 24, pp. 387-405
dcterms.bibliographicCitationNasirian, V., Moayedi, S., Davoudi, A., Lewis, F., Distributed cooperative control of DC microgrids (2014) IEEE Trans. Power Electron., 8993 (C), p. 1
dcterms.bibliographicCitationPapadimitriou, C.N., Zountouridou, E.I., Hatziargyriou, N.D., Review of hierarchical control in DC microgrids (2015) Electr. Power Syst. Res., 122, pp. 159-167
dcterms.bibliographicCitationGarces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationSalomonsson, D., Söder, L., Sannino, A., Protection of low-voltage DC microgrids (2009) IEEE Trans. Power Del., 24 (3), pp. 1045-1053
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II Express Briefs, p. 1
dcterms.bibliographicCitationMontoya, O.D., Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model (2018) IEEE Trans. Circuits Syst. II Express Briefs, p. 1
dcterms.bibliographicCitationGAMS Free Demo Version, , https://www.gams.com/download/, GAMS Development Corp. [Online]
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15 (5), pp. 890-900. , May
dcterms.bibliographicCitationMontoya, O.D., Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation (2017) Ingeniería y Ciencia, 13 (26), pp. 39-63. , Nov
dcterms.bibliographicCitationNiazi, G., Lalwani, M., PSO based optimal distributed generation placement and sizing in power distribution networks: A comprehensive review (2017) 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305-311. , July
dcterms.bibliographicCitationRajalakshmi, J., Durairaj, S., Review on optimal distributed generation placement using particle swarm optimization algorithms (2016) 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1-6. , Feb
dcterms.bibliographicCitationGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , apr
dcterms.bibliographicCitationVatani, M., Alkaran, D.S., Sanjari, M.J., Gharehpetian, G.B., Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods (2016) IET Gener. Transm. Distrib., 10 (1), pp. 66-72
dcterms.bibliographicCitationYuan, H., Li, F., Wei, Y., Zhu, J., Novel linearized power flow and linearized opf models for active distribution networks with application in distribution LMP (2018) IEEE Trans. Smart Grid, 9 (1), pp. 438-448. , Jan
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int. J. Electr. Power Energy Syst., 63, pp. 609-617
dcterms.bibliographicCitationLópez Lezama, J.M., Optimal location of distributed generation in distribution systems using a model of nonlineal whole mixed programming (2011) Tecnura, 15 (30), pp. 101-110
dcterms.bibliographicCitationChen, C., Simulated annealing-based optimal wind-thermal coordination scheduling (2007) IET Gener. Transm. Distrib., 1 (3), pp. 447-455. , May
dcterms.bibliographicCitationOgunjuyigbe, A., Ayodele, T., Akinola, O., Impact of distributed generators on the power loss and voltage profile of sub-transmission network (2016) J. Electr. Syst. Inf. Technol., 3 (1), pp. 94-107
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/EPIM.2018.8756492
dc.subject.keywordsDirect-current power grids
dc.subject.keywordsDistributed generators location and sizing
dc.subject.keywordsGeneral algebraic modeling system
dc.subject.keywordsMixed-integer nonlinear programming
dc.subject.keywordsPower losses minimization
dc.subject.keywordsAlgebra
dc.subject.keywordsDistributed computer systems
dc.subject.keywordsDistributed power generation
dc.subject.keywordsInteger programming
dc.subject.keywordsLocation
dc.subject.keywordsNonlinear programming
dc.subject.keywordsVoltage regulators
dc.subject.keywordsAlgebraic modeling
dc.subject.keywordsDirect current power
dc.subject.keywordsLocation and sizings
dc.subject.keywordsMixed-integer nonlinear programming
dc.subject.keywordsPower-losses
dc.subject.keywordsElectric power transmission networks
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesFINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, the PhD program in Engineering of la Universidad Tecnológica de Pereira, and the Univer-sidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211.
dc.relation.conferencedate14 November 2018 through 16 November 2018
dc.type.spaConferencia
dc.identifier.orcid56919564100
dc.identifier.orcid57210170020
dc.identifier.orcid55791991200
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500
dc.identifier.orcid22836502400


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/