Mostrar el registro sencillo del ítem

dc.creatorGrisales-Noreña L.F.
dc.creatorMontoya O.D.
dc.creatorGonzález-Montoya D.
dc.creatorRamos-Paja C.A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.issued2018
dc.identifier.citation2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn9781538678428
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8859
dc.description.abstractThis paper proposes a new approach for a Parallel implementation of Monte-Carlo method aimed for optimal location and sizing of distributed generators in distribution networks. In this approach, a reduction of the solution space is performed, using heuristic strategies, to improve processing times, power losses and voltage profiles considering the location of distributed generators in electric distribution networks. The mathematical formulation of the problem considers a single-objective function, which is composed by weighting factors associated with active power losses and square voltage error minimization; moreover, classical power flow constraints and distributed generation capabilities are considered as restrictions. A master-slave optimization strategy is used to solve the problem: the master stage corresponds to the proposed parallel Monte-Carlo with space solution reduction, which performs the optimal location of the distributed generators; the slave strategy is in charge of solving the resulting optimal power problem. Classical 33-node and 69node test systems are used to validate the proposed approach via MATLAB/MATPOWER software. For comparison purposes, the loss sensitivity factor (LSF), genetic algorithm (GA) and classical parallel Monte-Carlo (PMC) solutions are also tested. The simulations confirm that the proposed reduction to the space solution for the PMC provides improved results in comparison with the existing approaches. © 2018 IEEE.eng
dc.description.sponsorshipUniversidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI UNAL-ITM-39823/P17211
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069767265&doi=10.1109%2fEPIM.2018.8756405&partnerID=40&md5=6511d3a81f3a361e5c21b94f7ba6d99a
dc.titleA New Approach for the Monte-Carlo Method to Locate and Size DGs in Distribution Systems
dcterms.bibliographicCitationGrisales, L.F., Cuestas, B.J.R., Jaramillo, F.E., Ubicación y dimensionamiento de generación distribuida: Una revisíon (2017) Ciencia e Ingeniera Neogranadina, 27, pp. 157-176. , 12
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), pp. 1084-1090. , June
dcterms.bibliographicCitationGupta, P., Pandit, M., Kothari, D.P., A review on optimal sizing and siting of distributed generation system: Integrating distributed generation into the grid (2014) 2014 6th IEEE Power India International Conference (PIICON), pp. 1-6. , Dec
dcterms.bibliographicCitationTheo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods (2017) Renewable Sustainable Energy Rev., 67, pp. 531-573
dcterms.bibliographicCitationVlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y., Ant colony system-based algorithm for constrained load flow problem (2005) IEEE Trans. Power Syst., 20 (3), pp. 1241-1249. , Aug
dcterms.bibliographicCitationRezaee Jordehi, A., Allocation of distributed generation units in electric power systems: A review (2016) Renewable Sustainable Energy Rev., 56, pp. 893-905. , apr
dcterms.bibliographicCitationPrakash, P., Khatod, D.K., Optimal sizing and siting techniques for distributed generation in distribution systems: A review (2016) Renewable Sustainable Energy Rev., 57, pp. 111-130. , may
dcterms.bibliographicCitationAli, E., Abd Elazim, S., Abdelaziz, A., Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations (2017) Renewable Energy, 101, pp. 1311-1324. , feb
dcterms.bibliographicCitationMoradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int. J. Electr. Power Energy Syst., 34 (1), pp. 66-74. , jan
dcterms.bibliographicCitationMartinez, J.A., Guerra, G., A parallel Monte Carlo method for optimum allocation of distributed generation (2014) IEEE Trans. Power Syst., 29 (6), pp. 2926-2933
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapi, R.A., Granada, M., Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , Feb
dcterms.bibliographicCitationJain, N., Singh, S., Srivastava, S., PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model (2014) Swarm Evol. Comput., 19, pp. 15-24
dcterms.bibliographicCitationKansal, S., Kumar, V., Tyagi, B., Optimal placement of different type of DG sources in distribution networks (2013) Int. J. Electr. Power Energy Syst., 53, pp. 752-760
dcterms.bibliographicCitationPesaran, M.H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renewable Sustainable Energy Rev., 75, pp. 293-312. , no. October, aug
dcterms.bibliographicCitationMohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65. , apr
dcterms.bibliographicCitationChakravorty, M., Das, D., Voltage stability analysis of radial distribution networks (2001) Int. J. Electr. Power Energy Syst., 23 (2), pp. 129-135
dcterms.bibliographicCitationZidan, A., Gabbar, H., DG mix and energy storage units for optimal planning of self-sufficient micro energy grids (2016) Energies, 9 (12), p. 616. , aug
dcterms.bibliographicCitationHarrison, G.P., Piccolo, A., Siano, P., Wallace, A.R., Hybrid GA and OPF evaluation of network capacity for distributed generation connections (2008) Electr. Power Syst. Res., 78 (3), pp. 392-398
dcterms.bibliographicCitationGeorgilakis, P.S., Hatziargyriou, N.D., Optimal distributed generation placement in power distribution networks: Models, methods, and future research (2013) IEEE Trans. Power Syst., 28 (3), pp. 3420-3428. , Aug
dcterms.bibliographicCitationDaud, S., Kadir, A., Gan, C., Mohamed, A., Khatib, T., A comparison of heuristic optimization techniques for optimal placement and sizing of photovoltaic based distributed generation in a distribution system (2016) Sol. Energy, 140, pp. 219-226. , dec
dcterms.bibliographicCitationGopiya Naik, S., Khatod, D., Sharma, M., Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks (2013) Int. J. Electr. Power Energy Syst., 53, pp. 967-973. , dec
dcterms.bibliographicCitationSahoo, N., Prasad, K., A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems (2006) Energy Convers. Manage., 47 (18-19), pp. 3288-3306. , nov
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/EPIM.2018.8756405
dc.subject.keywordsDistributed generators
dc.subject.keywordsMonte-carlo method
dc.subject.keywordsOptimization techniques
dc.subject.keywordsParallel processing
dc.subject.keywordsDistributed power generation
dc.subject.keywordsElectric load flow
dc.subject.keywordsElectric losses
dc.subject.keywordsFunctions
dc.subject.keywordsGenetic algorithms
dc.subject.keywordsLocation
dc.subject.keywordsMATLAB
dc.subject.keywordsSoftware testing
dc.subject.keywordsDistributed generators
dc.subject.keywordsDistribution systems
dc.subject.keywordsMathematical formulation
dc.subject.keywordsOptimization strategy
dc.subject.keywordsOptimization techniques
dc.subject.keywordsParallel implementations
dc.subject.keywordsParallel Monte Carlo
dc.subject.keywordsParallel processing
dc.subject.keywordsMonte Carlo methods
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesFINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the Universidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211.
dc.relation.conferencedate14 November 2018 through 16 November 2018
dc.type.spaConferencia
dc.identifier.orcid55791991200
dc.identifier.orcid56919564100
dc.identifier.orcid57205565936
dc.identifier.orcid22836502400


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.