Mostrar el registro sencillo del ítem
A New Approach for the Monte-Carlo Method to Locate and Size DGs in Distribution Systems
dc.creator | Grisales-Noreña L.F. | |
dc.creator | Montoya O.D. | |
dc.creator | González-Montoya D. | |
dc.creator | Ramos-Paja C.A. | |
dc.date.accessioned | 2020-03-26T16:32:31Z | |
dc.date.available | 2020-03-26T16:32:31Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018 | |
dc.identifier.isbn | 9781538678428 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8859 | |
dc.description.abstract | This paper proposes a new approach for a Parallel implementation of Monte-Carlo method aimed for optimal location and sizing of distributed generators in distribution networks. In this approach, a reduction of the solution space is performed, using heuristic strategies, to improve processing times, power losses and voltage profiles considering the location of distributed generators in electric distribution networks. The mathematical formulation of the problem considers a single-objective function, which is composed by weighting factors associated with active power losses and square voltage error minimization; moreover, classical power flow constraints and distributed generation capabilities are considered as restrictions. A master-slave optimization strategy is used to solve the problem: the master stage corresponds to the proposed parallel Monte-Carlo with space solution reduction, which performs the optimal location of the distributed generators; the slave strategy is in charge of solving the resulting optimal power problem. Classical 33-node and 69node test systems are used to validate the proposed approach via MATLAB/MATPOWER software. For comparison purposes, the loss sensitivity factor (LSF), genetic algorithm (GA) and classical parallel Monte-Carlo (PMC) solutions are also tested. The simulations confirm that the proposed reduction to the space solution for the PMC provides improved results in comparison with the existing approaches. © 2018 IEEE. | eng |
dc.description.sponsorship | Universidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI UNAL-ITM-39823/P17211 | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069767265&doi=10.1109%2fEPIM.2018.8756405&partnerID=40&md5=6511d3a81f3a361e5c21b94f7ba6d99a | |
dc.title | A New Approach for the Monte-Carlo Method to Locate and Size DGs in Distribution Systems | |
dcterms.bibliographicCitation | Grisales, L.F., Cuestas, B.J.R., Jaramillo, F.E., Ubicación y dimensionamiento de generación distribuida: Una revisíon (2017) Ciencia e Ingeniera Neogranadina, 27, pp. 157-176. , 12 | |
dcterms.bibliographicCitation | Grisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), pp. 1084-1090. , June | |
dcterms.bibliographicCitation | Gupta, P., Pandit, M., Kothari, D.P., A review on optimal sizing and siting of distributed generation system: Integrating distributed generation into the grid (2014) 2014 6th IEEE Power India International Conference (PIICON), pp. 1-6. , Dec | |
dcterms.bibliographicCitation | Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods (2017) Renewable Sustainable Energy Rev., 67, pp. 531-573 | |
dcterms.bibliographicCitation | Vlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y., Ant colony system-based algorithm for constrained load flow problem (2005) IEEE Trans. Power Syst., 20 (3), pp. 1241-1249. , Aug | |
dcterms.bibliographicCitation | Rezaee Jordehi, A., Allocation of distributed generation units in electric power systems: A review (2016) Renewable Sustainable Energy Rev., 56, pp. 893-905. , apr | |
dcterms.bibliographicCitation | Prakash, P., Khatod, D.K., Optimal sizing and siting techniques for distributed generation in distribution systems: A review (2016) Renewable Sustainable Energy Rev., 57, pp. 111-130. , may | |
dcterms.bibliographicCitation | Ali, E., Abd Elazim, S., Abdelaziz, A., Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations (2017) Renewable Energy, 101, pp. 1311-1324. , feb | |
dcterms.bibliographicCitation | Moradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int. J. Electr. Power Energy Syst., 34 (1), pp. 66-74. , jan | |
dcterms.bibliographicCitation | Martinez, J.A., Guerra, G., A parallel Monte Carlo method for optimum allocation of distributed generation (2014) IEEE Trans. Power Syst., 29 (6), pp. 2926-2933 | |
dcterms.bibliographicCitation | Grisales, L.F., Grajales, A., Montoya, O.D., Hincapi, R.A., Granada, M., Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , Feb | |
dcterms.bibliographicCitation | Jain, N., Singh, S., Srivastava, S., PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model (2014) Swarm Evol. Comput., 19, pp. 15-24 | |
dcterms.bibliographicCitation | Kansal, S., Kumar, V., Tyagi, B., Optimal placement of different type of DG sources in distribution networks (2013) Int. J. Electr. Power Energy Syst., 53, pp. 752-760 | |
dcterms.bibliographicCitation | Pesaran, M.H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renewable Sustainable Energy Rev., 75, pp. 293-312. , no. October, aug | |
dcterms.bibliographicCitation | Mohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65. , apr | |
dcterms.bibliographicCitation | Chakravorty, M., Das, D., Voltage stability analysis of radial distribution networks (2001) Int. J. Electr. Power Energy Syst., 23 (2), pp. 129-135 | |
dcterms.bibliographicCitation | Zidan, A., Gabbar, H., DG mix and energy storage units for optimal planning of self-sufficient micro energy grids (2016) Energies, 9 (12), p. 616. , aug | |
dcterms.bibliographicCitation | Harrison, G.P., Piccolo, A., Siano, P., Wallace, A.R., Hybrid GA and OPF evaluation of network capacity for distributed generation connections (2008) Electr. Power Syst. Res., 78 (3), pp. 392-398 | |
dcterms.bibliographicCitation | Georgilakis, P.S., Hatziargyriou, N.D., Optimal distributed generation placement in power distribution networks: Models, methods, and future research (2013) IEEE Trans. Power Syst., 28 (3), pp. 3420-3428. , Aug | |
dcterms.bibliographicCitation | Daud, S., Kadir, A., Gan, C., Mohamed, A., Khatib, T., A comparison of heuristic optimization techniques for optimal placement and sizing of photovoltaic based distributed generation in a distribution system (2016) Sol. Energy, 140, pp. 219-226. , dec | |
dcterms.bibliographicCitation | Gopiya Naik, S., Khatod, D., Sharma, M., Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks (2013) Int. J. Electr. Power Energy Syst., 53, pp. 967-973. , dec | |
dcterms.bibliographicCitation | Sahoo, N., Prasad, K., A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems (2006) Energy Convers. Manage., 47 (18-19), pp. 3288-3306. , nov | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/EPIM.2018.8756405 | |
dc.subject.keywords | Distributed generators | |
dc.subject.keywords | Monte-carlo method | |
dc.subject.keywords | Optimization techniques | |
dc.subject.keywords | Parallel processing | |
dc.subject.keywords | Distributed power generation | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Electric losses | |
dc.subject.keywords | Functions | |
dc.subject.keywords | Genetic algorithms | |
dc.subject.keywords | Location | |
dc.subject.keywords | MATLAB | |
dc.subject.keywords | Software testing | |
dc.subject.keywords | Distributed generators | |
dc.subject.keywords | Distribution systems | |
dc.subject.keywords | Mathematical formulation | |
dc.subject.keywords | Optimization strategy | |
dc.subject.keywords | Optimization techniques | |
dc.subject.keywords | Parallel implementations | |
dc.subject.keywords | Parallel Monte Carlo | |
dc.subject.keywords | Parallel processing | |
dc.subject.keywords | Monte Carlo methods | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | FINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the Universidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211. | |
dc.relation.conferencedate | 14 November 2018 through 16 November 2018 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 55791991200 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 57205565936 | |
dc.identifier.orcid | 22836502400 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.