Show simple item record

dc.creatorMontoya O.D.
dc.creatorCampillo Jiménez, Javier Eduardo
dc.creatorGil-González W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:30Z
dc.date.available2020-03-26T16:32:30Z
dc.date.issued2018
dc.identifier.citation2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn9781538678428
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8856
dc.description.abstractThis paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-Hamiltonian structure, where PBC theory is based upon, to design stable controllers via Lyapunov stability theory. To control the photovoltaic solar system, a current control mode is used, since photovoltaic cells are mathematically modelled as current sources, where the photo-current determined by the solar irradiance and the cell's temperature. Proportional and proportional-integral passivity-based controllers are developed to operate the boost converter under current control mode to extract the maximum power available in the PV array. Simulation results are conducted via MATLAB/ODE-package software. © 2018 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI Universidad Tecnológica de Pereira, UTP
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069774602&doi=10.1109%2fEPIM.2018.8756428&partnerID=40&md5=f10eda05e24d890d8b456d27081d9e34
dc.titleIntegration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
dcterms.bibliographicCitationRauf, S., Khan, N., Application of DC-AC hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017
dcterms.bibliographicCitationKouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61
dcterms.bibliographicCitationKadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014
dcterms.bibliographicCitationKakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented MPPT employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685
dcterms.bibliographicCitationEspinoza-Trejo, D.R., Bárcenas-Bárcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507
dcterms.bibliographicCitationBianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based MPPT technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178
dcterms.bibliographicCitationVelázquez, I.O., Pérez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Noreña, L.F.G., Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6
dcterms.bibliographicCitationDe Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main MPPT techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167
dcterms.bibliographicCitationSolodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , Sept
dcterms.bibliographicCitationShahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement MPPT method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018 9th Annual, pp. 212-217
dcterms.bibliographicCitationChiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified TS fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526
dcterms.bibliographicCitationKakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array MPPT through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514
dcterms.bibliographicCitationMetry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., MPPT of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationMontoya, O., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express Briefs
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) Journal of Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationSira-Ramirez, H., Ortega, R., Escobar, G., Lagrangian modeling of switch regulated DC-to-DC power converters (1996) Proceedings of 35th IEEE Conference on Decision and Control, 4, pp. 4492-4497. , Dec vol.4
dcterms.bibliographicCitationVan Der Schaft, A., Jeltsema, D., Port-hamiltonian systems theory: An introductory overview (2014) Foundations and Trends R - In Systems and Control, 1 (2-3), pp. 173-378
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Automat. Contr., 61 (5), pp. 1223-1238
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119
dcterms.bibliographicCitationAvila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFAC-PapersOnLine, 51 (3), pp. 187-192
dcterms.bibliographicCitationCastaneda, M., Cano, A., Jurado, F., Sánchez, H., Fernandez, L.M., Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system (2013) International Journal of Hydrogen Energy, 38 (10), pp. 3830-3845
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/EPIM.2018.8756428
dc.subject.keywordsBoost converter
dc.subject.keywordsCurrent control mode
dc.subject.keywordsLyapunov stability
dc.subject.keywordsPassivity-based control theory
dc.subject.keywordsPphotovoltaic arrays
dc.subject.keywordsControl theory
dc.subject.keywordsControllers
dc.subject.keywordsDC-DC converters
dc.subject.keywordsElectric current control
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsHamiltonians
dc.subject.keywordsMATLAB
dc.subject.keywordsPhotoelectrochemical cells
dc.subject.keywordsPhotovoltaic cells
dc.subject.keywordsPower control
dc.subject.keywordsSolar power generation
dc.subject.keywordsTwo term control systems
dc.subject.keywordsBoost converter
dc.subject.keywordsCurrent control modes
dc.subject.keywordsLyapunov stability
dc.subject.keywordsPassivity based control
dc.subject.keywordsPhotovoltaic arrays
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesFINANCIAL SUPPORT This work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727–2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.
dc.relation.conferencedate14 November 2018 through 16 November 2018
dc.type.spaConferencia
dc.identifier.orcid56919564100
dc.identifier.orcid55609096600
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.