Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.date.accessioned2020-03-26T16:32:30Z
dc.date.available2020-03-26T16:32:30Z
dc.date.issued2018
dc.identifier.citationElectric Power Components and Systems; Vol. 46, Núm. 18; pp. 1938-1947
dc.identifier.issn15325008
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8854
dc.description.abstractThis paper presents a time-domain analysis for current control in single-phase distribution networks using superconducting magnetic energy storage devices connected through pulse-width modulated current source converters. The control law is designed through a combination of the classical feedback linearization control technique and the intrinsic Hamiltonian structure of the system. The stability analysis of the dynamical system is done through the temporal solution of the differential equations that represent the closed-loop dynamical system. The proposed controller does not require of the single phase-phase locked loop which does a strategy very attractive due to that avoids all the problems that these elements contain, increase the reliability of the system and reducing implementation costs. The effectiveness and the robustness of the proposed current control methodology are tested in a low-voltage single-phase distribution network. All simulation scenarios are conducted in MATLAB/ODE environment under time-domain reference frame. © 2019, © 2019 Taylor & Francis Group, LLC.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government, DSITI
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor and Francis Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060348555&doi=10.1080%2f15325008.2018.1531325&partnerID=40&md5=6446403b2a4a9a83cac2ae273335f35f
dc.titleTime-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology (2014) Renew. Sustain. Energy Rev, 39, pp. 748-764
dcterms.bibliographicCitationAmrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927
dcterms.bibliographicCitationHussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: State of the art (2017) Renew. Sustain. Energy Rev, 71, pp. 12-28
dcterms.bibliographicCitationBarma, M., Saidur, R., Rahman, S., Allouhi, A., Akash, B., Sait, S.M., A review on boilers energy use, energy savings, and emissions reductions (2017) Renew. Sustain. Energy Rev, 79, pp. 970-983
dcterms.bibliographicCitationMakky, A.A., Alaswad, A., Gibson, D., Olabi, A., Renewable energy scenario and environmental aspects of soil emission measurements (2017) Renew. Sustain. Energy Rev, 68, pp. 1157-1173
dcterms.bibliographicCitationRocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P., Control of power converters in AC microgrids (2012) IEEE Trans. Power Electron, 27 (11), pp. 4734-4749
dcterms.bibliographicCitationZhang, G., Li, Z., Zhang, B., Halang, W.A., Power electronics converters: Past, present and future (2018) Renew. Sustain. Energy Rev, 81, pp. 2028-2044
dcterms.bibliographicCitationParvini, Y., Vahidi, A., Fayazi, S.A., Heuristic versus optimal charging of supercapacitors, lithium-ion, and lead-acid batteries: An efficiency point of view (2017) IEEE Trans. Control Syst. Technol, PP (99), pp. 1-14
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-Based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst, 31 (5), pp. 3369-3380
dcterms.bibliographicCitationOrtega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst, 32 (3), pp. 2445-2454
dcterms.bibliographicCitationChen, X.Y., Integrated SMES technology for modern power system and future smart grid (2014) IEEE Trans. Appl. Superconduct, 24 (5), pp. 1-5
dcterms.bibliographicCitationAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47
dcterms.bibliographicCitationShi, J., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Superconduct, 20 (3), pp. 1360-1364
dcterms.bibliographicCitationMurray, D.B., Hayes, J.G., Cycle testing of supercapacitors for long-life robust applications (2015) IEEE Trans. Power Electron, 30 (5), pp. 2505-2516
dcterms.bibliographicCitationRahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system (2012) Energy Convers. Manage, 59, pp. 96-102
dcterms.bibliographicCitationKamh, M.Z., Iravani, R., Steady-state model and power-flow analysis of single-phase electronically coupled distributed energy resources (2012) IEEE Trans. Power Deliv, 27 (1), pp. 131-139
dcterms.bibliographicCitationVitorino, M.A., Wang, R., Corrêa, M.B.D.R., Boroyevich, D., Compensation of dc-link oscillation in single-phase-to-single-phase VSC/CSC and power density comparison (2014) IEEE Trans. Ind. Appl, 50 (3), pp. 2021-2028
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationAmoozegar, D., DSTATCOM modelling for voltage stability with fuzzy logic PI current controller (2016) Int. J. Electr. Power Energy Syst, 76, pp. 129-135
dcterms.bibliographicCitationElliman, R., Gould, C., Al-Tai, M., (2015), pp. 1-5. , Review of current and future electrical energy storage devices, 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK: IEEE, September
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv, 23 (4), pp. 2097-2104
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., (2017), pp. 145-150. , Supervisory LMI-based state-feedback control for current source power conditioning of SMES, 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA: IEEE, March
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II: Express Briefs, p. 1
dcterms.bibliographicCitationde Jesús Hernández Hernández, R., Cárdenas, V., Espinosa-Pérez, G., (2016), pp. 283-288. , Development of a current source inverter for energy storage systems, 2016 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico: IEEE, June
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., (2017), pp. 89-95. , IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC, 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA: IEEE, March
dcterms.bibliographicCitationAtalla, E.S., Zhang, F., Balsara, P.T., Bellaouar, A., Ba, S., Kiasaleh, K., Time-domain analysis of passive mixer impedance: a switched-capacitor approach (2017) IEEE Trans. Circuits Syst. I Regul. Paper, 64 (2), pp. 347-359
dcterms.bibliographicCitationZafari, A., Jazaeri, M., Conceptual design of an efficient unified shunt active power filter based on voltage and current source converters (2017) Energy, 119, pp. 911-925
dcterms.bibliographicCitationLiu, Y., Sun, Y., Su, M., Li, X., Ning, S., A single phase AC/DC/AC converter with unified ripple power decoupling (2017) IEEE Trans. Power Electron, PP (99), p. 1
dcterms.bibliographicCitationHan, H., Liu, Y., Sun, Y., Su, M., Xiong, W., Single-phase current source converter with power decoupling capability using a series-connected active buffer (2015) IET Power Electron, 8 (5), pp. 700-707
dcterms.bibliographicCitationSomkun, S., Chunkag, V., Unified unbalanced synchronous reference frame current control for single-phase grid-connected voltage-source converters (2016) IEEE Trans. Ind. Electron, 63 (9), pp. 5425-5436
dcterms.bibliographicCitationMonfared, M., Sanatkar, M., Golestan, S., Direct active and reactive power control of single-phase grid-tie converters (2012) IET Power Electron, 5 (8), pp. 1544-1550
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., Forchetti, D.G., Interconnection and damping assignment control of a three-phase front end converter (2014) Int. J. Electr. Power Energy Syst, 60, pp. 317-324
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19
dcterms.bibliographicCitationPerko, L., (2013) Differential Equations and Dynamical Systems, Ser. Texts in Applied Mathematics, , https://books.google.com.co/books?id=VFnSBwAAQBAJ, New York: Springer,. Available
dcterms.bibliographicCitationHaddad, W., Chellaboina, V., (2011) Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, , https://books.google.com.co/books?id=bUQN6Ph7YEIC, Princeton, NJ: Princeton University Press, and,. [Online]. Available
dcterms.bibliographicCitationKhalil, H., (2013) Nonlinear Systems, Series Always Learning, , https://books.google.com.co/books?id=VZ72nQEACAAJ, London, UK: Pearson Education, Limited,. [Online]. Available
dcterms.bibliographicCitationAbdelsalam, A.K., Massoud, A., Darwish, A., Ahmed, S., (2012), pp. 1398-1403. , Simplified generic on-line PWM technique for single phase grid connected current source inverters, Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, Orlando, FL, USA: IEEE
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1080/15325008.2018.1531325
dc.subject.keywordsCurrent control
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsSingle-phase distribution networks
dc.subject.keywordsStability analysis
dc.subject.keywordsSuperconducting magnetic energy storage devices
dc.subject.keywordsDifferential equations
dc.subject.keywordsDynamical systems
dc.subject.keywordsElectric current control
dc.subject.keywordsElectric energy storage
dc.subject.keywordsFeedback linearization
dc.subject.keywordsHamiltonians
dc.subject.keywordsMagnetic storage
dc.subject.keywordsMATLAB
dc.subject.keywordsPulse width modulation
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsControl methodology
dc.subject.keywordsExact feedback linearization
dc.subject.keywordsHamiltonian structures
dc.subject.keywordsImplementation cost
dc.subject.keywordsPulse-width-modulated
dc.subject.keywordsSingle phase
dc.subject.keywordsStability analysis
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsTime domain analysis
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.