Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González, Walter
dc.creatorSerra F.M.
dc.date.accessioned2020-03-26T16:32:30Z
dc.date.available2020-03-26T16:32:30Z
dc.date.issued2018
dc.identifier.citationIEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 65, Núm. 12; pp. 2003-2007
dc.identifier.issn15497747
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8853
dc.description.abstractThis express brief presents a nonlinear active and reactive power control for a superconducting magnetic energy storage (SMES) system connected in three-phase distribution networks using pulse-width modulated current-source converter (PWM-CSC). The passivity-based control (PBC) theory is selected as a nonlinear control technique, since the open-loop dynamical model exhibits a port-Hamiltonian (pH) structure. The PBC theory exploits the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closed-loop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the closed-loop dynamical system. Simulation results in a three-phase radial distribution network show the possibility to control the active and reactive power independently as well as the possibility to use the SMES system connected through a PWM-CSC as a dynamic power factor compensator for time-varying loads. All simulations are conducted in a MATLAB/ODE package. © 2004-2012 IEEE.eng
dc.description.sponsorshipConsejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de San Luis Department of Science, Information Technology and Innovation, Queensland Government: 727-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042104395&doi=10.1109%2fTCSII.2018.2805774&partnerID=40&md5=a0701d8cb7f8428b5d63ba0478d8f4af
dc.titlePBC Approach for SMES Devices in Electric Distribution Networks
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev, 42, pp. 569-596. , Feb
dcterms.bibliographicCitationAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47. , Apr
dcterms.bibliographicCitationZobaa, A., (2013) Energy Storage-Technologies and Applications, , Rijeka, Croatia: InTech
dcterms.bibliographicCitationShi, J., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond, 20 (3), pp. 1360-1364. , Jun
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 145-150. , Denver, CO, USA, Mar
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst, 31 (5), pp. 3369-3380. , Sep
dcterms.bibliographicCitationHayashi, H., Test results of power system control by experimental SMES (2006) IEEE Trans. Appl. Supercond, 16 (2), pp. 598-601. , Jun
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Del, 23 (4), pp. 2097-2104. , Oct
dcterms.bibliographicCitationNgamroo, I., Simultaneous optimization of SMES coil size and control parameters for robust power system stabilization (2011) IEEE Trans. Appl. Supercond, 21 (3), pp. 1358-1361. , Jun
dcterms.bibliographicCitationWang, Z., Zou, Z., Zheng, Y., Design and control of a photovoltaic energy and SMES hybrid system with current-source grid inverter (2013) IEEE Trans. Appl. Supercond, 23 (3), p. 5701505. , Jun
dcterms.bibliographicCitationNguyen, T.-T., Yoo, H.-J., Kim, H.-M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond, 26 (4), pp. 1-5. , Jun
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond, 24 (5), pp. 1-5. , Oct
dcterms.bibliographicCitationHemeida, A.M., A fuzzy logic controlled superconducting magnetic energy storage, SMES frequency stabilizer (2010) Elect. Power Syst. Res, 80 (6), pp. 651-656. , Jun
dcterms.bibliographicCitationAli, M.H., Wu, B., Tamura, J., Dougal, R.A., Minimization of shaft oscillations by fuzzy controlled SMES considering time delay (2010) Elect. Power Syst. Res, 80 (7), pp. 770-777. , Jul
dcterms.bibliographicCitationLiu, F., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers, 19 (4), pp. 774-782. , Dec
dcterms.bibliographicCitationMahmud, M.A., Hossain, M.J., Pota, H.R., Dynamical modeling and nonlinear control of superconducting magnetic energy systems: Applications in power systems (2014) Proc. Aust. Universities Power Eng. Conf. (AUPEC), pp. 1-6. , Perth, WA, Australia, Sep./Oct
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 89-95. , Denver, CO, USA, Mar
dcterms.bibliographicCitationGao, Y., Sun, B., Lu, G., Passivity-based integral sliding-mode control of uncertain singularly perturbed systems (2011) IEEE Trans. Circuits Syst. II, Exp. Briefs, 58 (6), pp. 386-390. , Jun
dcterms.bibliographicCitationGao, Y., Lu, G., Wang, Z., Passivity analysis of uncertain singularly perturbed systems (2010) IEEE Trans. Circuits Syst. II, Exp. Briefs, 57 (6), pp. 486-490. , Jun
dcterms.bibliographicCitationSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , Jul
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , May
dcterms.bibliographicCitationLi, J., Liu, Y., Li, C., Chu, B., Passivity-based nonlinear excitation control of power systems with structure matrix reassignment (2013) Information, 4 (3), pp. 342-350. , Aug
dcterms.bibliographicCitationOrtega, R., Perez, J., Nicklasson, P., Sira-Ramirez, H., (1998) Passivity- Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, , 1st ed. London, U.K.: Springer
dcterms.bibliographicCitationOrtega, R., Van der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596. , Apr
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Elect. Power Syst. Res, 142, pp. 12-19. , Jan
dcterms.bibliographicCitationGaviria, C., Fossas, E., Grino, R., Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling (2005) IEEE Trans. Circuits Syst. I, Reg. Papers, 52 (3), pp. 609-616. , Mar
dcterms.bibliographicCitationChapman, S., (2005) Electric Machinery Fundamentals, , 5th ed. New York, NY, USA: McGraw-Hill
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/TCSII.2018.2805774
dc.subject.keywordsDistribution networks
dc.subject.keywordsPassivity-based control (PBC)
dc.subject.keywordsPulse-width modulated current-source converter (PWM-CSC)
dc.subject.keywordsSuperconducting energy storage system (SMES)
dc.subject.keywordsDamping
dc.subject.keywordsDynamical systems
dc.subject.keywordsElectric energy storage
dc.subject.keywordsElectric power distribution
dc.subject.keywordsEnergy storage
dc.subject.keywordsIntegrated circuit interconnects
dc.subject.keywordsMagnetic storage
dc.subject.keywordsMathematical models
dc.subject.keywordsMATLAB
dc.subject.keywordsPulse width modulation
dc.subject.keywordsReactive power
dc.subject.keywordsSuperconducting coils
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsActive and reactive power controls
dc.subject.keywordsEnergy storage systems
dc.subject.keywordsGlobally asymptotically stability
dc.subject.keywordsIntegrated circuit interconnections
dc.subject.keywordsPassivity based control
dc.subject.keywordsPwm-csc
dc.subject.keywordsRadial distribution networks
dc.subject.keywordsSuperconducting magnetic energy storage system
dc.subject.keywordsPower control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesManuscript received December 29, 2017; accepted February 9, 2018. Date of publication February 13, 2018; date of current version November 23, 2018. This work was supported in part by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia under Grant 727-2015, in part by Ph.D. Program in Engineering of Universidad Tecnológica de Pereira, Colombia, and in part by Universidad Nacional de San Luis, Argentina, and Consejo Nacional de Investigaciones Cientficas y Técnicas, Argentina. This brief was recommended by Associate Editor T. Fernando. (Corresponding author: O. D. Montoya.) O. D. Montoya is with the Programa de Ingeniería Eléctrica y Electrónica, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid37104976300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.