Show simple item record

A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®

dc.creatorBarone M.
dc.creatorBarceló F.
dc.creatorPagnola M.
dc.creatorLarreteguy A.
dc.creatorMarrugo A.G.
dc.creatorUseche J.
dc.date.accessioned2020-03-26T16:32:29Z
dc.date.available2020-03-26T16:32:29Z
dc.date.issued2020
dc.identifier.citationInternational Journal of Thermal Sciences; Vol. 150
dc.identifier.issn12900729
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8850
dc.description.abstractThis work shows the results of a numerical model developed to simulate the CBMS technique for the production of the Fe78Si9B13 metallic magnetic ribbons for application in electronics. The model proposes a numerical approximation to a Vogel-Fulcher-Tammann (VFT) expression as a method in the solidification process. This approximation is introduced into the “compressibleInterFoam” routine, included in the OpenFOAM® suite, originally developed for the simulation of two immiscible, non-isothermal and compressible fluids. This routine solves, the phase fraction transport using the Volume of Fluids (VOF) approach. The boundary conditions imposed in the model were experimentally validated by digital image analysis with a high-speed camera at 5602 fps for the determination of the temperature profiles. The phase change is represented as a growth of several orders of magnitude of the alloy viscosity (μ) as the temperature (T) decreases, reaching solidification around the crystallization temperature (Tg). Also, we establish the condition of initial stability of CBMS process (R > 1.5) for Peclet numbers close to 400, and the validity up to limits of rotation in the wheel close to 40 m s−1. The proposed methodology is validated with previous work. Encouraging results show that the solution of the CBMS process can be adequately simulated with the proposed approach. © 2019 Elsevier Masson SASeng
dc.description.sponsorshipAgencia Nacional de Promoción Científica y Tecnológica, ANPCyT Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Masson SAS
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076679317&doi=10.1016%2fj.ijthermalsci.2019.106221&partnerID=40&md5=e8a83adb89de9532831c3771611da041
dc.titleA model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®
dcterms.bibliographicCitationPavuna, D., Production of metallic glass ribbons by the chill-block melt spinning technique in stabilized laboratory conditions (1981) J. Mater. Sci., 16, pp. 2419-2433
dcterms.bibliographicCitationPozo Lopez, G., Fabietti, L.M., Condo, A.M., Urreta, S.E., Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning (2010) J. Magn. Magn. Mater., 322, pp. 3088-3093
dcterms.bibliographicCitationPagnola, M., Malmoria, M., Barone, M., Biot number behaviour in the chill block melt spinning (CBMS) process (2016) Appl. Therm. Eng., 103, pp. 807-811
dcterms.bibliographicCitationTkatch, V.I., Limanovski, A.I., Denisenko, S.N., Rassolov, S.G., The effect of the melt-spinning processing parameters on the rate of cooling (2002) Mater. Sci. Eng., A, 323, pp. 91-96
dcterms.bibliographicCitationCarpenter, J.K., Heat transfer and solidification in planar-flow melt-spinning high wheel speeds (1997) Int. J. Heat Mass Transf., 40 (9), pp. 1993-2007
dcterms.bibliographicCitationPagnola, M., Malmoria, M., Barone, M., Sirkin, H., Analysis of Fe78Si9B13 (%at.)ribbons of noncommercial scrap materials produced by melt spinning equipment (2014) Multidiscip. Model. Mater. Struct., 10 (4), pp. 511-524
dcterms.bibliographicCitationMuraca, D., Silveyra, J., Pagnola, M., Cremaschi, M., Nanocrystals magnetic contribution to FINEMET type soft magnetic materials with Ge addition (2009) J. Magn. Magn. Mater., 321, pp. 3640-3645
dcterms.bibliographicCitationLiu, H., Chen, W., Qiu, S., Liu, G., Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting (2009) Metall. Mater. Trans. B, 40 (3), pp. 411-429
dcterms.bibliographicCitationTakata, Y., Shirakawa, H., Sasaki, H., Kuroki, T., Ito, T., Numerical analysis of rapid solidification in a single roller process (1999) Scripta Techn. Heat Trans. Asian Res., 28 (1), pp. 34-49
dcterms.bibliographicCitationBussman, M., Mostaghimi, J., Kirk, D.W., Graydon, J.W., A numerical study of steady flow and temperature field within a melt spinning puddle (2002) Int. J. Heat Mass Transf., 45 (19), pp. 3997-4010
dcterms.bibliographicCitationBarone, M., Barceló, F., Useche, J., Larreteguy, A., Pagnola, M., Analysis and simulation of thermal/viscose model for Melt Spinning process (2018) Rev. UIS Ing., 17 (1), pp. 185-190
dcterms.bibliographicCitationWang, C., (2010) Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning, pp. 1-138. , Pro Quest, UMI Dissertation Publishing Iowa State University Ames 1243778733/1-243-77873-3
dcterms.bibliographicCitationPagnola, M., Barone, M., Malmoria, M., Sirkin, H., Influence of z/w relation in Chill Block Melt Spinning (CBMS) process and analysis of thickness in ribbons (2015) Multidiscip. Model. Mater. Struct., 11 (1), pp. 23-31
dcterms.bibliographicCitationPagnola, M., Vivero, J., Marrugo, A., Magnetic materials by melt spinning method, structural characterization, and numerical modeling (2018) New Uses of Micro and Nanomaterials, 6, pp. 1-19. , InTech
dcterms.bibliographicCitationMarrugo, A., Barone, M., Useche, J., Pagnola, M., Experimental investigation of high-speed melt spinning by means of digital image analysis (2016) Latin America Optics and Photonics Conference, , Optical Society of America paper LTh2C.5
dcterms.bibliographicCitationBizjan, B., Širok, B., Drnovšek, J., Pušnik, I., Temperature measurement of mineral melt by means of a high-speed camera (2015) Appl. Opt., 54 (26), pp. 7978-7984
dcterms.bibliographicCitationWang, G., Matthys, E., Mathematical simulation of melt flow, heat transfer and non-equilibrium solidification in planar flow casting (2002) Model. Simul. Mater. Sci. Eng., 10 (1), pp. 35-55
dcterms.bibliographicCitationSowjanya, M., Kishen Kumar Reddy, T., Cooling heel features and amorphous ribbon formation during planar flow melt spinning process (2014) J. Mater. Process. Technol., 214, pp. 1861-1870
dcterms.bibliographicCitationCarpenter, J., Steen, P., Heat transfer and solidification in planar-flow melt-spinning: high wheel speeds (1997) Int. J. Heat Mass Transf., 40 (9), pp. 1993-2007
dcterms.bibliographicCitationSteen, P.H., Fluid mechanics of spin casting of metals (1997) Annu. Rev. Fluid Mech., 29, pp. 373-397
dcterms.bibliographicCitationPavuna, D., Production of metallic glass ribbons by the chill-block melt-spinning technique in stabilized laboratory conditions (1981) J. Mater. Sci., 16 (9), pp. 2419-2433
dcterms.bibliographicCitationStephani, G., Mhlbach, H., Fiedler, H., Richter, G., Infrared measurements of the melt puddle in planar flow casting (1988) Mater. Sci. Eng., 98, pp. 29-32
dcterms.bibliographicCitationPagnola, M., Malmoria, M., Barone, M., Sirkin, H., Analysis of Fe78Si9B13 (%at.) ribbons of noncommercial scrap materials produced by melt spinning equipment (2014) Multidiscip. Model. Mater. Struct., 10 (4), pp. 511-524
dcterms.bibliographicCitationBarceló, L.F., Barone, M., Larreteguy, A.E., Pagnola, M., Simulacion del proceso de Melt Spinning utilizando OpeFoam (2017) Mech. Comput., 35 (297). , Electronic ISSN 2591-3522
dcterms.bibliographicCitationSteen, P.H., Karcher, C., Fluid mechanics of spin casting of metals (1997) Annu. Rev. Fluid Mech., 29, pp. 373-397
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.ijthermalsci.2019.106221
dc.subject.keywordsHigh speed cameras
dc.subject.keywordsIron compounds
dc.subject.keywordsMelt spinning
dc.subject.keywordsNumerical methods
dc.subject.keywordsSilicon compounds
dc.subject.keywordsSolidification
dc.subject.keywordsChill block melt spinnings
dc.subject.keywordsCrystallization temperature
dc.subject.keywordsDigital image analysis
dc.subject.keywordsInitial stabilities
dc.subject.keywordsNumerical approximations
dc.subject.keywordsOrders of magnitude
dc.subject.keywordsSolidification process
dc.subject.keywordsTemperature profiles
dc.subject.keywordsTransport properties
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors of this work acknowledge the support of CONICET – Argentina; ANPCyT – Argentina (FS Nano 03/10 program), UBACyT 20020150100088BA , PDTS (CIN-CONICET) PDTS 0362 project, and UADE through grants P17T03 for funding the present research. Appendix A
dc.type.spaArtículo
dc.identifier.orcid56433990700
dc.identifier.orcid57212455415
dc.identifier.orcid14012202200
dc.identifier.orcid6602228807
dc.identifier.orcid24329839300
dc.identifier.orcid24537991200


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/