Show simple item record

Element Free Galerkin (EFG) sensitivity study in structural analysis

dc.contributor.editorCastro Suarez J.R.
dc.creatorMartinez, T.J.A
dc.creatorArrieta, O.E.W.
dc.identifier.citationIOP Conference Series: Materials Science and Engineering; Vol. 519, Núm. 1
dc.description.abstractThe present study shows a parametric analysis of the meshfree method, Element Free Galerkin (EFG), on the elastic analysis of a cantilever beam. This study allows us to determine the best convergence conditions of the solutions varying characteristic. EFG is based on the construction of Moving Least Squares (MLS) approximations using the weighted residual method on the weak formulation, with MLS form functions as the same weighting functions. We consider the parameters of the method such as the order of the basic functions of MLS functions, the size of the support domain of the local MLS functions and the density of Gauss points against errors calculated according to the L 2 norm and processing time. It is shown that by increasing the order of basic functions it is possible to obtain more precise results, however, a larger support diameter and Gauss points higher density are required in order to stabilize the solution, considerably increasing processing times. Therefore, it is only advisable to use high-order base functions when the precision in the results is the priority and a high computational resource is available. © Published under licence by IOP Publishing Ltd.eng
dc.description.sponsorshipBolivar si Innova;CAMACOL Bolivar;Consejo Profesional Nacional de Ingenieria (COPNIA);Establecimiento Publico Ambiental (EPA);et al.;Renata Colombia
dc.format.mediumRecurso electrónico
dc.publisherInstitute of Physics Publishing
dc.sourceScopus 57209263590
dc.sourceScopus 57209248085
dc.titleElement Free Galerkin (EFG) sensitivity study in structural analysis
dcterms.bibliographicCitationMetsis, P., Lantzounis, N., Papadrakakis, M., (2015) Computer Methods in Applied Mechanics and Engineering, 283, pp. 782-805
dcterms.bibliographicCitationMhamed, M., Idir, B., World Academy of Science, Engineering and Technology (2016) International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10, pp. 646-654
dcterms.bibliographicCitationBelytschko, T., Lu, Y.Y., Gu, L., (1994) International Journal for Numerical Methods in Engineering, 37 (2), pp. 229-256
dcterms.bibliographicCitationHosseini, S., Malekan, M., Pitangueira, R.L.D.S., Silva, R.P., (2017) Latin American Journal of Solids and Structures, 14 (6), pp. 1017-1039
dcterms.bibliographicCitationRamirez, S.J.F., Mesa, M.E., Branch, B.J.W., Boulanger, P., (2011) Revista Avances en Sistemas e Informática, 8
dcterms.bibliographicCitationWu, C.K.C., Plesha, M.E., (2002) International Journal for Numerical Methods in Engineering, 53 (3), pp. 499-514
dcterms.bibliographicCitationShivanian, E., (2015) Engineering Analysis with Boundary Elements, 50, pp. 249-257
dcterms.bibliographicCitationRen, H., Pei, K., Wang, L., (2014) Applied Mathematics and Computation, 238, pp. 527-546
dcterms.bibliographicCitationSun, F., Wang, J., Cheng, Y., Huang, A., (2015) Applied Numerical Mathematics, 98, pp. 79-105
dcterms.bibliographicCitationDehghan, M., Mohammadi, V., (2016) Computers & Mathematics with Applications, 71 (4), pp. 892-921
dcterms.bibliographicCitationDabboura, E., Sadat, H., Prax, C., (2016) Alexandria Engineering Journal, 55 (3), pp. 2783-2787
dcterms.bibliographicCitationCheng, Y., Bai, F., Liu, C., Peng, M., (2016) International Journal of Computational Materials Science And, Engineering, 5 (4)
dcterms.bibliographicCitationChowdhury, H.A., Wittek, A., Miller, K., Joldes, G.R., (2016) Journal of Scientific Computing, pp. 1-15
dcterms.bibliographicCitationArzani, H., Kaveh, A., Taromsari, M.T., (2017) Scientia Iranica. Transaction A, Civil Engineering, 24, p. 143
dcterms.bibliographicCitationGhasemi, M., Amrollahi, R., (2016) Engineering Analysis with Boundary Elements, 67, pp. 126-137
dcterms.bibliographicCitationTrask, N., Maxey, M., Hu, X., (2016), preprint
dcterms.bibliographicCitationLi, H., Mulay, S.S., (2013) Meshless Methods and Their Numerical Properties, , (CRC press)
dcterms.bibliographicCitationLiu, G.R., Gu, Y.T., (2005) An Introduction to Meshfree Methods and Their Programming, , (Springer Science amp
dcterms.bibliographicCitationBusiness Media)
dcterms.bibliographicCitationMase, G., (1970) Schaum's Outline of Continuum Mechanics, , (McGraw Hill Professional)
dcterms.bibliographicCitationDolbow, J., Belytschko, T., (1998) Archives of Computational Methods in Engineering, 5 (3), pp. 207-241
dcterms.bibliographicCitationZhu, T., Atluri, S., (1998) Computational Mechanics, 21 (3), pp. 211-222
dcterms.bibliographicCitationAugarde, C.E., Deeks, A.J., (2008) Finite Elements in Analysis and Design, 44 (9-10), pp. 595-601
dcterms.bibliographicCitationTimoshenko, S., Goodier, J., (1970) Theory of Elasticity, , (New York: McGraw-Hill)
dcterms.bibliographicCitationYao, Y., Bhat, R.B.P.M., (2005) NaCoMM, pp. 249-254
dcterms.bibliographicCitationLuis, J., Ochoa, R., (1998) Revista Universidad EAFIT, 34, pp. 107-118
dc.source.eventExpotecnologia 2018: Research, Innovation and Development in Engineering, 31 October 2018 through 2 November 2018
dc.subject.keywordsComputational mechanics
dc.subject.keywordsLeast squares approximations
dc.subject.keywordsComputational resources
dc.subject.keywordsConvergence conditions
dc.subject.keywordsElement-free Galerkin
dc.subject.keywordsMoving least squares approximation
dc.subject.keywordsParametric -analysis
dc.subject.keywordsSensitivity studies
dc.subject.keywordsWeighted residual method
dc.subject.keywordsWeighting functions
dc.subject.keywordsGalerkin methods
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as