Mostrar el registro sencillo del ítem

dc.creatorTorres, E.
dc.creatorTorres, R.
dc.date.accessioned2019-11-06T19:05:19Z
dc.date.available2019-11-06T19:05:19Z
dc.date.issued2014
dc.identifier.citationJournal of Computational and Applied Mathematics; Vol. 263, pp. 218-224
dc.identifier.issn0377-0427
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8760
dc.description.abstractThe description of the electron wavefunctions in atoms is generalized to the fractional Fourier series. This method introduces a continuous and infinite number of chirp basis sets with linear variation of the frequency to expand the wavefunctions, in which plane-waves are a special case. The chirp characteristics of each basis set can be adjusted through a single parameter. Thus, the basis set cutoff can be optimized variationally. The approach is tested with the expansion of the electron wavefunctions in atoms, and it is shown that chirp basis sets substantially improve the convergence in the description of the electron density. We have found that the natural oscillations of the electron core states are efficiently described in chirp-waves. © 2013 Elsevier B.V. All rights reserved.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-84891682706&doi=10.1016%2fj.cam.2013.12.016&partnerID=40&md5=4e245cd1d56a7acb5a11936aedf47cd7
dc.sourceScopus 35094573000
dc.sourceScopus 56270896900
dc.titleChirp-wave expansion of the electron wavefunctions in atoms
dcterms.bibliographicCitationBloch, F., Über die quantenmechanik der elektronen in kristallgittern (1928) Z. Phys., 52, pp. 555-600
dcterms.bibliographicCitationSlater, J.C., Wave functions in a periodic potential (1937) Phys. Rev., 51, pp. 846-851
dcterms.bibliographicCitationHerring, C., A new method for calculating wave functions in crystals (1940) Phys. Rev., 57, pp. 1169-1177
dcterms.bibliographicCitationPhillips, J.C., Kleinman, L., New method for calculating wave functions in crystals and molecules (1959) Phys. Rev., 116, pp. 287-294
dcterms.bibliographicCitationKohanoff, J., (2006) Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, , Cambridge University Press
dcterms.bibliographicCitationGygi, F., Adaptive Riemannian metric for plane-wave electronic-structure calculations (1992) Europhys. Lett., 19 (7), p. 617
dcterms.bibliographicCitationNamias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265
dcterms.bibliographicCitationMcBride, A.C., Kerr, F.H., On namias's fractional Fourier transforms (1987) IMA J. Appl. Math., 39 (2), pp. 159-175
dcterms.bibliographicCitationOzaktas, H.M., Barshan, B., Mendlovic, D., Onural, L., Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms (1994) J. Opt. Soc. Amer. A, 11 (2), pp. 547-559
dcterms.bibliographicCitationPei, S.-C., Yeh, M.-H., Luo, T.-L., Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform (1999) IEEE Trans. Signal Process., 47 (10), pp. 2883-2888
dcterms.bibliographicCitationPauli, W., Relativistic field theories of elementary particles (1941) Rev. Modern Phys., 13, pp. 203-232
dcterms.bibliographicCitationKohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects (1965) Phys. Rev., 140, pp. 1133-A1138
dcterms.bibliographicCitationVosko, S.H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis (1980) Can. J. Phys., 58 (8), pp. 1200-1211
dcterms.bibliographicCitationPayne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients (1992) Rev. Modern Phys., 64, pp. 1045-1097
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.cam.2013.12.016
dc.subject.keywordsChirp basis set
dc.subject.keywordsChirp expansion of wavefunctions
dc.subject.keywordsChirp series
dc.subject.keywordsFractional Fourier transform
dc.subject.keywordsLocal gauge transformation
dc.subject.keywordsBasis sets
dc.subject.keywordsChirp series
dc.subject.keywordsElectron wavefunctions
dc.subject.keywordsFractional Fourier series
dc.subject.keywordsFractional Fourier transforms
dc.subject.keywordsGauge transformation
dc.subject.keywordsInfinite numbers
dc.subject.keywordsNatural oscillation
dc.subject.keywordsAtoms
dc.subject.keywordsFourier series
dc.subject.keywordsElectrons
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.