Mostrar el registro sencillo del ítem

dc.creatorCapistrano A.J.S.
dc.creatorGutiérrez-Piñeres A.C.
dc.date.accessioned2019-11-06T19:05:17Z
dc.date.available2019-11-06T19:05:17Z
dc.date.issued2016
dc.identifier.citationAdvances in Astronomy; Vol. 2016
dc.identifier.issn1687-7969
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8749
dc.description.abstractExact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011). In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein's gravity alone. © 2016 Abraão J. S. Capistrano and Antonio C. Gutiérrez-Piñeres.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherHindawi Limited
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85003927936&doi=10.1155%2f2016%2f9193627&partnerID=40&md5=9e232629a8c8708cc72cd8d54c1aec42
dc.sourceScopus 26530767700
dc.sourceScopus 25225467000
dc.titleEffective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
dcterms.bibliographicCitationBocquet, M., Bonazzola, S., Gourgoullon, E., Novak, J., Rotating neutron star models with a magnetic field (1995) Astronomy & Astrophysics, 301
dcterms.bibliographicCitationHackman, E., Xu, H., Charged particle motion in Kerr-Newmann space-times (2013) Physical Review D, 87 (12), 21p
dcterms.bibliographicCitationChakraborty, K., Rahaman, F., Ray, S., Nandi, A., Islam, N., Possible features of galactic halo with electric field and observational constraints (2014) General Relativity and Gravitation, 46 (10), pp. 1-24
dcterms.bibliographicCitationNandi, A., Islam, N., Possible features of galactic halo with electric field and observational constraints (2014) General Relativity and Gravitation, 46
dcterms.bibliographicCitationPugliese, D., Quevedo, H., Ruffini, R., Circular motion of neutral test particles in Reissner-Nordström spacetime (2011) Physical Review D, 83 (2)
dcterms.bibliographicCitationPugliese, D., Quevedo, H., Rffini, R., Motion of charged test particles in Reissner-Nordström spacetime (2011) Physical Review D, 83 (10)
dcterms.bibliographicCitationPugliese, D., Quevedo, H., Ruffini, R., Equatorial circular motion in Kerr spacetime (2011) Physical Review D, 84 (4)
dcterms.bibliographicCitationHan, J., The large-scale magnetic field structure of our Galaxy: Efficiently deduced from pulsar rotation measures (2003) Proceedings of the Magnetized Interstellar Medium Symposium, 24, pp. 3-12. , B. Uyanker, W. Reich, and R. Wielebinski, Eds. Antalya, Turkey
dcterms.bibliographicCitationHan, J., Magnetic fields in our milky way galaxy and nearby galaxies, solar and astrophysical dynamos and magnetic activity (2012) Proceedings of the International Astronomical Union, IAU Symposium, Solar and Astrophysical Dynamos and Magnetic Activity, 294, pp. 213-224. , A. G. Kosovichev, E. M. de Gouveia Dal Pino, and Y. Yan, Eds
dcterms.bibliographicCitationKrause, M., Magnetic fields in spiral galaxies (2003) The Magnetized Interstellar Medium, , B. Uyanker, W. Reich, and R. Wielebinski, Eds
dcterms.bibliographicCitationBeek, R., Wielebinski, R., (2013) Planets, Stars and Stellar Systems, 614. , Springer
dcterms.bibliographicCitationBeck, R., Magnetic fields in spiral galaxies (2016) The Astronomy and Astrophysics Review, 24 (1)
dcterms.bibliographicCitationVoigt, D., Letelier, P.S., Exact relativistic static charged perfect fluid disks (2004) Physical Review D, 70 (6)
dcterms.bibliographicCitationGutíerrez-Piñeres, A.C., González, G.A., Quevedo, H., Conformastatic disk-haloes in Einstein-Maxwell gravity (2013) Physical Review D, 87 (4)
dcterms.bibliographicCitationGutíerrez-Piñeres, A.C., Capistrano, A.J.S., Quevedo, H., Test particles in amagnetized conformastatic spacetime (2016) Physical Review D, 93 (12)
dcterms.bibliographicCitationBinney, J., Tremaine, S., (2011) Galactic Dynamic, , PrincetonUniversity Press, Princeton, NJ, USA
dcterms.bibliographicCitationGutíerrez-Piñeres, A.C., Capistrano, A.J.S., Exact relativistic magnetized haloes around rotating disks (2015) Advances in Mathematical Physics, 2015, 13p
dcterms.bibliographicCitationCapistrano, A.J.S., Roque, W.L., Valada, R.S., Weyl conformastatic perihelion advance (2014) Monthly Notices of the Royal Astronomical Society, 444 (2), pp. 1639-1646
dcterms.bibliographicCitationPitjev, N.P., Pitjeva, E.V., Constraints on dark matter in the solar system (2013) Astronomy Letters, 39 (3), pp. 141-149
dcterms.bibliographicCitationPitjeva, E.V., Pitjev, N.P., Relativistic effects and darkmatter in the solar system fromobservations of planets and spacecraft (2013) Monthly Notices of the Royal Astronomical Society, 432 (4), pp. 3431-3437
dcterms.bibliographicCitationSynge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co., Interscience Publishers, Amsterdam, The Netherlands
dcterms.bibliographicCitationWilhelm, K., Dwivedi, B.N., Secular perihelion advances of the inner planets and asteroid Icarus (2014) New Astronomy, 31, pp. 51-55
dcterms.bibliographicCitationNambuya, G.G., Azimuthally symmetric theory of gravitation-I. on the perihelion precession of planetary orbits (2010) Monthly Notices of the Royal Astronomical Society, 403 (3), pp. 1381-1391
dcterms.bibliographicCitationFernandez, J.A., (2005) Comets: Nature, Dynamics, Origin, and Their Cosmogonical Relevance Vol 328 of Astrophysics and Space Science Library, , Springer, Berlin, Germany
dcterms.bibliographicCitationHarko, T., Kovács, Z., Lobo, F.S.N., Soc, R., Solar System tests ofHorava-Lifshitz gravity (2011) Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 467 (2129), pp. 1390-1407
dcterms.bibliographicCitationNeslusan, L., On the global electrostatic charge of stars (2001) Astronomy & Astrophysics, 372 (3), pp. 913-915
dcterms.bibliographicCitationWill, C.M., The confrontation between general relativity and experiment (2006) Living Reviews in Relativity, 9
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1155/2016/9193627
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.