Mostrar el registro sencillo del ítem

dc.creatorReyes-Vera, E.
dc.creatorAcevedo-Osorio, G.
dc.creatorArias-Correa, M.
dc.creatorSenior, D.E.
dc.date.accessioned2019-11-06T19:05:16Z
dc.date.available2019-11-06T19:05:16Z
dc.date.issued2019
dc.identifier.citationSensors (Switzerland); Vol. 19, Núm. 8
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8743
dc.description.abstractThis work presents a non-invasive, reusable and submersible permittivity sensor that uses a microwave technique for the dielectric characterization of liquid materials. The proposed device consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing principle is based on the notch introduced by the resonators in the transmission coefficient, which is affected due to the introduction of the sensor in a new liquid material. Then, a frequency shift of the notch and the Q-factor of the proposed sensor are related with the changes in the surrounding medium. By means of a particular experimental procedure, commercial liquids are employed to obtain the calibration curve. Thus, a mathematical equation is obtained to extract the dielectric permittivity of liquid materials with unknown dielectric properties. A good match between simulated and experimental results is obtained, as well as a high Q-factor, compact size, good sensitivity and high repeatability for use in sensing applications. Sensors like the one here presented could lead to promising solutions for characterizing materials, particularly in determining material properties and quality in the food industry, bio-sensing and other applications. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.description.sponsorshipInstituto Tecnológico de Costa Rica: P15106, P13252, Universidad Tecnológica de Pereira
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85065302543&doi=10.3390%2fs19081936&partnerID=40&md5=8bdd8af835db67e3482bb946520f94c0
dc.sourceScopus 57195722871
dc.sourceScopus 57204207314
dc.sourceScopus 57200341418
dc.sourceScopus 36698427600
dc.titleA submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization
dcterms.bibliographicCitationZhou, H., Hu, D., Yang, C., Chen, C., Ji, J., Chen, M., Chen, Y., Mu, X., Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic Sensor (2018) Sci. Rep, 8, p. 14801
dcterms.bibliographicCitationKaatze, U., Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging (2013) Meas. Sci. Technol, 24
dcterms.bibliographicCitationAnsari, M.A.H., Jha, A.K., Akhtar, M.J., Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity (2015) IEEE Sens. J, 15, pp. 7181-7189
dcterms.bibliographicCitationJilnai, M., Wen, W., Cheong, L., Ur Rehman, M., A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging (2016) Sensors, 16, p. 52
dcterms.bibliographicCitationGutierrez, S., Just, T., Sachs, J., Baer, C., Vega, F., Field-Deployable System for the Measurement of Complex Permittivity of Improvised Explosives and Lossy Dielectric Materials (2018) IEEE Sens. J, 18, pp. 6706-6714
dcterms.bibliographicCitationMurata, K.I., Hanawa, A., Nozaki, R., Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies (2005) J. Appl. Phys, p. 98
dcterms.bibliographicCitationSaeed, K., Pollard, R.D., Hunter, I.C., Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials (2008) IEEE Trans. Microw. Theory Tech, 56, pp. 2340-2347
dcterms.bibliographicCitationValencia-Balvín, C., Pérez-Walton, S., Osorio-Guillén, J.M., First principles calculations of the electronic and dielectric properties of λ-Ta2O5 (2018) TecnoLógicas, 21, pp. 43-52
dcterms.bibliographicCitationStacheder, M., Koeniger, F., Schuhmann, R., New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements (2009) Sensors, 9, pp. 2951-2967
dcterms.bibliographicCitationTorrealba-Meléndez, R., Sosa-Morales, M.E., Olvera-Cervantes, J.L., Corona-Chávez, A., Dielectric Properties of Beans at Ultra-Wide Band Frequencies (2014) J. Microw. Power Electromagn. Energy, 48, pp. 104-112
dcterms.bibliographicCitationLee, H.J., Lee, H.S., Yoo, K.H., Yook, J.G., DNA sensing using split-ring resonator alone at microwave regime (2010) J. Appl. Phys, p. 108
dcterms.bibliographicCitationSun, J., Huang, M., Yang, J.-J., Li, T.-H., Lan, Y.-Z., A microring resonator based negative permeability metamaterial sensor (2011) Sensors, 11, pp. 8060-8071
dcterms.bibliographicCitationStevan, S., Paiter, L., Galvão, J., Roque, D., Chaves, E., Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress (2015) Sensors, 15, pp. 26457-26477
dcterms.bibliographicCitationChen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K., (2004) Microwave Electronics Measurement and Materials Characterization, , John Wiley & Sons, Ltd: Chichester, UK
dcterms.bibliographicCitationMegriche, A., Belhadj, A., Mgaidi, A., Microwave dielectric properties of binary solvent water- alcohol, alcohol-alcohol mixtures at temperatures between (2012) Mediterr. J. Chem, 1, pp. 200-209
dcterms.bibliographicCitationSaeed, K., Shafique, M.F., Byrne, M.B., Hunter, I.C., (2012) Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications, , Haq, M.Z., Ed., In Tech: London, UK
dcterms.bibliographicCitationJilani, M.T., Zaka, M., Khan, A.M., Khan, M.T., Ali, S.M., A Brief Review of Measuring Techniques for Characterization of Dielectric Materials (2012) Int. J. Inf. Technol. Electr. Eng, p. 1
dcterms.bibliographicCitationLobato-Morales, H., Corona-Chávez, A., Murthy, D.V.B., Olvera-Cervantes, J.L., Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities (2010) Rev. Sci. Instrum, 81, p. 64704
dcterms.bibliographicCitationLi, S., Akyel, C., Bosisio, R.G., Precise Calculations and Measurements on the Complex Dielectric Constant of Lossy Materials Using TM/sub 010/ Cavity Perturbation Techniques (1981) IEEE Trans. Microw. Theory Tech, 29, pp. 1041-1048
dcterms.bibliographicCitationGalindo-Romera, G., Javier Herraiz-Martinez, F., Gil, M., Martinez-Martinez, J.J., Segovia-Vargas, D., Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization (2016) IEEE Sens. J, 16, pp. 3587-3596
dcterms.bibliographicCitationAcevedo-Osorio, G., Muñoz Ossa, H., Reyes-Vera, E., Performance Analysis of Monopole Excited Split Ring Resonator for Permittivity Characterization (2017) 2017 42Nd International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz)
dcterms.bibliographicCitationIEEE: Cancun, Mexico, pp. 1-2
dcterms.bibliographicCitationLobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Planar sensors for RFID wireless complex-dielectric-permittivity sensing of liquids (2013) 2013 IEEE MTT-S International Microwave Symposium Digest (MTT)
dcterms.bibliographicCitationIEEE, pp. 1-3. , Berlin, Germany
dcterms.bibliographicCitationIqbal, A., Smida, A., Saraereh, O.A., Alsafasfeh, Q.H., Mallat, N.K., Lee, B.M., Cylindrical Dielectric Resonator Antenna-Based Sensors for Liquid Chemical Detection (2019) Sensors, 19, p. 1200
dcterms.bibliographicCitationXu, K., Liu, Y., Chen, S., Zhao, P., Peng, L., Dong, L., Wang, G., Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity (2018) IEEE Access, 6, pp. 26111-26120
dcterms.bibliographicCitationDomínguez, M., Cataño, D., Reyes, E., Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures (2015) Actas Ing, 1, pp. 110-114
dcterms.bibliographicCitationBenkhaoua, L., Benhabiles, M.T., Mouissat, S., Riabi, M.L., Miniaturized Quasi-Lumped Resonator for Dielectric Characterization of Liquid Mixtures (2016) IEEE Sens. J, 16, pp. 1603-1610
dcterms.bibliographicCitationIslam, M.T., Hoque, A., Almutairi, A.F., Amin, N., Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application (2019) Sensors, 19, p. 169
dcterms.bibliographicCitationSmith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity (2000) Phys. Rev. Lett, 84, pp. 4184-4187
dcterms.bibliographicCitationCastellanos, L.M., Lopez, F., Reyes-Vera, E., Metamateriales: Principales características y aplicaciones (2016) Rev. La Acad. Colomb. Ciencias Exactas, Físicas Y Nat, 40, p. 395
dcterms.bibliographicCitationCatano-Ochoa, D., Senior, D.E., Lopez, F., Reyes-Vera, E., Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators (2016) Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, Fajardo, Puerto Rico, 26 June–1
dcterms.bibliographicCitationRaghavan, S., Rajeshkumar, V., An overview of metamaterials in biomedical applications (2013) Prog. Electromagn. Res. Symp, pp. 368-371
dcterms.bibliographicCitationChen, T., Li, S., Sun, H., Metamaterials application in sensing (2012) Sensors, 12, pp. 2742-2765
dcterms.bibliographicCitationCheng, X., Shi, J., Jao, P., Senior, D.E., Yoon, Y.-K., Reconfigurable split ring resonator array loaded waveguide for insitu tuning (2011) Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane,Wa, USA, 3–8 July, pp. 2947-2950
dcterms.bibliographicCitationReyes-Vera, E., Senior, D.E., Luna-Rivera, J.M., Lopez, F., Advances in electromagnetic applications and communications (2018) TecnoLógicas, 21, pp. 9-13
dcterms.bibliographicCitationRusni, I., Ismail, A., Alhawari, A., Hamidon, M., Yusof, N., An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications (2014) Sensors, 14, pp. 13134-13148
dcterms.bibliographicCitationLobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Chavez-Perez, R.A., Medina-Monroy, J.L., Wireless Sensing of Complex Dielectric Permittivity of Liquids Based on the RFID (2014) IEEE Trans. Microw. Theory Tech, 62, pp. 2160-2167
dcterms.bibliographicCitationLee, H.J., Lee, J.H., Choi, S., Jang, I.S., Choi, J.S., Jung, H., Il Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers (2013) Appl. Phys. Lett, p. 103
dcterms.bibliographicCitationLee, H.J., Yook, J.G., Biosensing using split-ring resonators at microwave regime (2008) Appl. Phys. Lett, 92, pp. 2011-2014
dcterms.bibliographicCitationLee, C.-S., Yang, C.-L., Thickness and Permittivity Measurement in Multi-Layered Dielectric Structures Using Complementary Split-Ring Resonators (2014) IEEE Sens. J, 14, pp. 695-700
dcterms.bibliographicCitationSalim, A., Lim, S., Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor (2016) Sensors, 16, p. 1802
dcterms.bibliographicCitationEbrahimi, A., Withayachumnankul, W., Al-Sarawi, S., Abbott, D., High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization (2014) IEEE Sens. J, 14, pp. 1345-1351
dcterms.bibliographicCitationWithayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., Fumeaux, C., Abbott, D., Metamaterial-based microfluidic sensor for dielectric characterization (2013) Sens. Actuators, a Phys, 189, pp. 233-237
dcterms.bibliographicCitationVelez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids (2017) IEEE Sens. J, 17, pp. 6589-6598
dcterms.bibliographicCitationChretiennot, T., Dubuc, D., Grenier, K.A., Microwave and Microfluidic Planar Resonator for Efficient and Accurate Complex Permittivity Characterization of Aqueous Solutions (2013) IEEE Trans. Microw. Theory Tech, 61, pp. 972-978
dcterms.bibliographicCitationVelez, P., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids (2018) IEEE Access, 6
dcterms.bibliographicCitationVelez, P., Munoz-Enano, J., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements (2019) IEEE Sens. J, 19, pp. 2562-2569
dcterms.bibliographicCitationBoratay, K., Miniaturized negative permeability materials (2007) Appl. Phys. Lett, pp. 137-139
dcterms.bibliographicCitationZahertar, S., Yalcinkaya, A.D., Torun, H., Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies (2015) AIP Adv, 5
dcterms.bibliographicCitationBaena, J.D., Bonache, J., Martin, F., Sillero, R.M., Falcone, F., Lopetegi, T., Laso, M.A.G., Portillo, M.F., Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines (2005) IEEE Trans. Microw. Theory Tech, 53, pp. 1451-1461
dcterms.bibliographicCitationAlahnomi, R.A., Zakaria, Z., Ruslan, E., Ab Rashid, S.R., Mohd Bahar, A.A., High-Q Sensor Based on Symmetrical Split Ring Resonator With Spurlines for Solids Material Detection (2017) IEEE Sens. J, 17, pp. 2766-2775
dcterms.bibliographicCitationAlahnomi, R.A., Zakaria, Z., Ruslan, E., Bahar, A.A.M., A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors (2016) Meas. Sci. Rev, 16, pp. 21-27
dcterms.bibliographicCitationKumari, R., Patel, P.N., Yadav, R., An ENG Resonator-Based Microwave Sensor for the Characterization of Aqueous Glucose (2018) J. Phys. D. Appl. Phys, 51
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.3390/s19081936
dc.subject.keywordsMaterial characterization
dc.subject.keywordsMetamaterial
dc.subject.keywordsMicrowave sensor
dc.subject.keywordsPermittivity measurements
dc.subject.keywordsSplit ring resonator
dc.subject.keywordsChemical contamination
dc.subject.keywordsDielectric materials
dc.subject.keywordsDielectric properties of liquids
dc.subject.keywordsLiquids
dc.subject.keywordsMetamaterials
dc.subject.keywordsMicrowave resonators
dc.subject.keywordsMonopole antennas
dc.subject.keywordsOptical resonators
dc.subject.keywordsPermittivity
dc.subject.keywordsPermittivity measurement
dc.subject.keywordsQ factor measurement
dc.subject.keywordsRing gages
dc.subject.keywordsSubmersibles
dc.subject.keywordsDielectric characterization
dc.subject.keywordsDielectric permittivities
dc.subject.keywordsExperimental procedure
dc.subject.keywordsMaterial characterizations
dc.subject.keywordsMathematical equations
dc.subject.keywordsSensing applications
dc.subject.keywordsSplit ring resonator
dc.subject.keywordsTransmission coefficients
dc.subject.keywordsMicrowave sensors
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.