Mostrar el registro sencillo del ítem

dc.creatorMontoya, O.D.
dc.creatorGil-González, Walter
dc.creatorAvila-Becerril, S.
dc.creatorGarcés, Alejandro
dc.creatorEspinosa-Pérez, G.
dc.date.accessioned2019-11-06T19:05:10Z
dc.date.available2019-11-06T19:05:10Z
dc.date.issued2019
dc.identifier.citationRIAI - Revista Iberoamericana de Automatica e Informatica Industrial; Vol. 16, Núm. 2; pp. 212-221
dc.identifier.issn1697-7912
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8724
dc.description.abstractThis paper presents the design and application of passivity-based control theory for distributed energy resources (DERs) integration through voltage source converters (VSC) in ac single-phase grids. The Hamiltonian representation of these grids facilitates the development of passive controllers that guarantee stability in the sense of Lyapunov for their closed-loop operation. The non- autonomous dynamic modeling of these systems is transformed into an incremental model, which allows solving the tracking as a regulation problem. The main contribution of this paper is in the ability to control the active and reactive power transference between DERs and the ac single-phase grid depending on the availability of the primary energy resource and the capacity of the converters. Simulations results show that all proposed controllers attain the control objective, reaching the same dynamic performance as classical proportional-integral controllers and guaranteeing asymptotic stability. All simulations are developed under the MATLAB/Simulink environment through the SimPowerSystems tool. © 2019 Universitat Politecnica de Valencia. All Rights Reserved.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversitat Politecnica de Valencia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063724667&doi=10.4995%2friai.2018.10666&partnerID=40&md5=25a7df08d0036cf5b9435e41f2152cd7
dc.sourceScopus 56919564100
dc.sourceScopus 57191493648
dc.sourceScopus 51461033000
dc.sourceScopus 36449223500
dc.sourceScopus 55989699400
dc.titleDistributed energy resources integration in AC Grids: A family of passivity-based controllers
dc.title.alternativeIntegración de REDs en Redes AC: Una familia de controladores basados en pasividad
dcterms.bibliographicCitationAvila-Becerril, S., Espinosa-Pérez, G., Canseco-Rodal, R., On the control of power flows in microgrids (2017) Decision and Control (CDC), 2017 IEEE 56th Annual Conference on, pp. 3252-3257. , IEEE
dcterms.bibliographicCitationAvila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFACPapersOnLine, 51 (3), pp. 187-192. , 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
dcterms.bibliographicCitationBahrani, B., Rufer, A., Kenzelmann, S., Lopes, L.A.C., Vector control of single-phase voltage-source converters based on fictive-axis emulation (2011) IEEE Trans. Ind. Appl., 47 (2), pp. 831-840. , March
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119
dcterms.bibliographicCitationCucuzzella, M., Incremona, G.P., Ferrara, A., Decentralized sliding mode control of islanded ac microgrids with arbitrary topology (2017) IEEE Transactions on Industrial Electronics, 64 (8), pp. 6706-6713
dcterms.bibliographicCitationDel Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., De Vries, M.M.J., Kransse, M.J., Monopoli, V.G., July, Passivity-based control by series /parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans. Control Syst. Technol., 22 (4), pp. 1310-1322
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationJones, P.S., Davidson, C.C., Sept, Calculation of power losses for MMCbased VSC HVDC stations (2013) 2013 15th European Conference on Power Electronics and Applications (EPE)., pp. 1-10
dcterms.bibliographicCitationKalla, U.K., Singh, B., Murthy, S.S., Dec, Intelligent neural network-based controller for single-phase wind energy conversion system using twowinding self-excited induction generator (2016) IEEE Trans. Ind. Inf., 12 (6), pp. 1986-1997
dcterms.bibliographicCitationKhodaei, A., Bahramirad, S., Shahidehpour, M., Microgrid planning under uncertainty (2014) IEEE Transactions on Power Systems, 30 (5), pp. 2417-2425
dcterms.bibliographicCitationKhodaei, A., Shahidehpour, M., Microgrid-based co-optimization of generation and transmission planning in power systems (2013) IEEE Transactions on Power Systems, 28 (2), pp. 1582-1590
dcterms.bibliographicCitationMartínez-Pérez, I., Espinosa-Perez, G., Sandoval-Rodríguez, G., Doria-Cerezo, A., IDA Passivity-Based Control of single phase back-to-back converters (2008) IEEE International Symposium on Industrial Electronics, (2), pp. 74-79
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Feb, Apparent power control in single-phase grids using sces devices: An ida-pbc approach (2018) 2018 IEEE 9th Latin American Symposium on Circuits Systems (LASCAS)., pp. 1-4
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) Journal of Energy Storage, 16, pp. 259-268
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) Journal of Energy Storage, 16, pp. 250-258
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1-1
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., May, Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900
dcterms.bibliographicCitationOrtega, A., Milano, F., Sept, Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationPerez, M., Ortega, R., Espinoza, J.R., Nov, Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890
dcterms.bibliographicCitationPerko, L., Differential equations and dynamical systems (2013) Texts in Applied Mathematics, , https://books.google.com.co/books?id=VFnSBwAAQBAJ, Springer New York
dcterms.bibliographicCitationRezaei, M.M., Soltani, J., A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions (2015) International Journal of Electrical Power & Energy Systems, 71, pp. 68-76
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19
dcterms.bibliographicCitationTenfen, D., Finardi, E.C., A mixed integer linear programming model for the energy management problem of microgrids (2015) Electric Power Systems Research, 122, pp. 19-28
dcterms.bibliographicCitationVasquez, J.C., Guerrero, J.M., Miret, J., Castilla, M., Vicuña, L.G.D., Hierarchical control of intelligent microgrids (2010) IEEE Industrial Electronics Magazine, pp. 23-29. , December 2010
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.4995/riai.2018.10666
dc.subject.keywordsDistributed energy resources
dc.subject.keywordsPassivity-based control
dc.subject.keywordsSingle-phase ac grids
dc.subject.keywordsVoltage source converters
dc.subject.keywordsAsymptotic stability
dc.subject.keywordsControllers
dc.subject.keywordsEnergy resources
dc.subject.keywordsMATLAB
dc.subject.keywordsPower control
dc.subject.keywordsPower converters
dc.subject.keywordsTwo term control systems
dc.subject.keywordsAC-grid
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsDistributed energy resources
dc.subject.keywordsMATLAB/Simulink environment
dc.subject.keywordsPassivity based control
dc.subject.keywordsPassivity-based controllers
dc.subject.keywordsProportional integral controllers
dc.subject.keywordsVoltage source converters
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.