Show simple item record

Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study

dc.creatorZapata-Rivera, J.
dc.creatorCalzado, C.J.
dc.identifier.citationMolecules; Vol. 24, Núm. 6
dc.description.abstractMetal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the control of the unpaired electrons and their localized/delocalized nature. It has been recently found that UV–Vis light can control the spin distribution of some [Cu(dmit)2]−2 salts in a direct and reversible way. In this work, we study the optical response of these salts and the origin of the differences observed in the EPR spectra under UV–Vis irradiation by means of wave function-based quantum chemistry methods. The low-lying states of the complex have been characterized and the electronic transitions with a non-negligible oscillator strength have been identified. The population of the corresponding excited states promoted by the UV–Vis absorption produces significant changes in the spin distribution, and could explain the changes observed in the system upon illumination. The interaction between neighbor [Cu(dmit)2]−2 complexes is weakly ferromagnetic, consistent with the relative orientation of the magnetic orbitals and the crystal packing, but in disagreement with previous assignments. Our results put in evidence the complex electronic structure of the [Cu(dmit)2]−2 radical and the relevance of a multideterminantal approach for an adequate analysis of their properties. © 2019 by the authors.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 1411712-51515, Ministerio de Economía y Competitividad, Federación Española de Enfermedades Raras: CTQ-2015-69019-P
dc.format.mediumRecurso electrónico
dc.publisherMDPI AG
dc.sourceScopus 41662282200
dc.sourceScopus 6701633179
dc.titleLight-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
dcterms.bibliographicCitationDay, P., Coronado, E., Molecular materials combining magnetic and conducting properties (2005) Magnetism: Molecules to Materials, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany
dcterms.bibliographicCitationFourmigué, M., Ouahab, L., (2011) Conducting and Magnetic Organometallic Molecular Materials, , Springer: Berlin/Heidelberg, Germany
dcterms.bibliographicCitationRobertson, N., Cronin, L., Metal bis-1,2-dithiolene complexes in conducting or magnetic crystalline assemblies (2002) Coord. Chem. Rev., 227, pp. 93-127
dcterms.bibliographicCitationKobayashi, H., Miyamoto, A., Kato, R., Sakai, F., Kobayashi, A., Yamakita, Y., Furukawa, Y., Watanabe, T., Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N’-dicyanoquinonediimine)2Cu (where R1,R2=CH3,CH3O,Cl,Br) (1993) Phys. Rev. B, 47, pp. 3500-3510
dcterms.bibliographicCitationUji, S., Terashima, T., Aoki, H., Brooks, J.S., Kato, R., Sawa, H., Aonuma, S., Kinoshita, M., Coexistence of one- And three-dimensional fermi surfaces and heavy cyclotron mass in the molecular conductor (DME-DCNQI)2Cu (1994) Phys. Rev. B, 50, pp. 15597-15601
dcterms.bibliographicCitationUji, S., Shinagawa, H., Terashima, T., Yakabe, T., Terai, Y., Tokumoto, M., Kobayashi, A., Kobayashi, H., Magnetic-field-induced superconductivity in a two-dimensional organic conductor (2001) Nature, 410, p. 908
dcterms.bibliographicCitationSawa, H., Tamura, M., Aonuma, S., Kinoshita, M., Kato, R., Charge-transfer-controlled phase transition in a molecular conductor, (DME-DCNQI)2Cu –doping effect– (1994) J. Phys. Soc. Jpn., 63, pp. 4302-4305
dcterms.bibliographicCitationFujiwara, H., Kobayashi, H., Fujiwara, E., Kobayashi, A., An indication of magnetic-field-induced superconductivity in a bifunctional layered organic conductor, κ-(bets)2FeBr4 (2002) J. Am. Chem. Soc., 124, pp. 6816-6817
dcterms.bibliographicCitationCoronado, E., Galan-Mascaros, J.R., Gomez-Garcia, C.J., Laukhin, V., Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound (2000) Nature, 408, pp. 447-449
dcterms.bibliographicCitationNakazawa, Y., Sato, A., Seki, M., Saito, K., Hiraki, K.-I., Takahashi, T., Kanoda, K., Sorai, M., Spin-peierls transition of the quasi-one-dimensional electronic system (DMe-DCNQI) _ (2) M (M = Li, Ag) probed by heat capacity (2003) Phys. Rev. B, 68, p. 085112
dcterms.bibliographicCitationCoomber, A.T., Beljonne, D., Friend, R.H., Brédas, J.L., Charlton, A., Robertson, N., Underbill, A.E., Day, P., Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O (1996) Nature, 380, p. 144
dcterms.bibliographicCitationKato, R., Conducting metal dithiolene complexes: Structural and electronic properties (2004) Chem. Rev., 104, pp. 5319-5346
dcterms.bibliographicCitationKobayashi, A., Fujiwara, E., Kobayashi, H., Single-component molecular metals with extended-ttf dithiolate ligands (2004) Chem. Rev., 104, pp. 5243-5264
dcterms.bibliographicCitationKobayashi, H., Fujiwara, E., Fujiwara, H., Tanaka, H., Otsuka, T., Kobayashi, A., Tokumoto, M., Cassoux, P., Antiferromagnetic organic superconductors, bets2FeX4 (2002) Mol. Cryst. Liquid Cryst., 380, pp. 139-144
dcterms.bibliographicCitationPop, F., Avarvari, N., Chiral metal-dithiolene complexes (2017) Coord. Chem. Rev., 346, pp. 20-31
dcterms.bibliographicCitationDong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., Feng, X., Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution (2015) Angew. Chem. Int. Ed., 54, pp. 12058-12063
dcterms.bibliographicCitationZarkadoulas, A., Koutsouri, E., Mitsopoulou, C.A., A perspective on solar energy conversion and water photosplitting by dithiolene complexes (2012) Coord. Chem. Rev., 256, pp. 2424-2434
dcterms.bibliographicCitationKusamoto, T., Nishihara, H., Zero-, one- And two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties (2019) Coord. Chem. Rev., 380, pp. 419-439
dcterms.bibliographicCitationKato, R., Development of π-electron systems based on Mm(dmit)2] (M = Ni and Pd
dcterms.bibliographicCitationdmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals (2014) Bull. Chem. Soc. Jpn., 87, pp. 355-374
dcterms.bibliographicCitationNaito, T., Karasudani, T., Mori, S., Ohara, K., Konishi, K., Takano, T., Takahashi, Y., Inoue, K., Molecular photoconductor with simultaneously photocontrollable localized spins (2012) J. Am. Chem. Soc., 134, pp. 18656-18666
dcterms.bibliographicCitationNaito, T., Karasudani, T., Ohara, K., Takano, T., Takahashi, Y., Inabe, T., Furukawa, K., Nakamura, T., Simultaneous control of carriers and localized spins with light in organic materials (2012) Adv. Mater., 24, pp. 6153-6157
dcterms.bibliographicCitationNoma, H., Ohara, K., Naito, T., Cu(dmit)2]2− building block for molecular conductors and magnets with photocontrollable spin distribution (2014) Chem. Lett., 43, pp. 1230-1232
dcterms.bibliographicCitationNoma, H., Ohara, K., Naito, T., Direct control of spin distribution and anisotropy in cu-dithiolene complex anions by light (2016) Inorganics, 4, p. 7
dcterms.bibliographicCitationNaito, T., Development of a control method for conduction and magnetism in molecular crystals (2017) Bull. Chem. Soc. Jpn., 90, pp. 89-136
dcterms.bibliographicCitationRay, K., Weyhermüller, T., Neese, F., Wieghardt, K., Electronic structure of square planar bis(benzene-1,2dithiolato)metal complexes [M(L)2]z (z = 2−, 1−, 0
dcterms.bibliographicCitationM = Ni, Pd, Pt, Cu, Au): An experimental, density functional, and correlated ab initio study (2005) Inorg. Chem., 44, pp. 5345-5360
dcterms.bibliographicCitationGewirth, A.A., Cohen, S.L., Schugar, H.J., Solomon, E.I., Spectroscopic and theoretical studies of the unusual epr parameters of distorted tetrahedral cupric sites: Correlations to X-ray spectral features of core levels (1987) Inorg. Chem., 26, pp. 1133-1146
dcterms.bibliographicCitationHoffmann, S.K., Goslar, J., Lijewski, S., Zalewska, A., Epr and ese of cus4 complex in Cu(dmit)2: G-factor and hyperfine splitting correlation in tetrahedral cu–sulfur complexes (2013) J. Magn. Reson., 236, pp. 7-14
dcterms.bibliographicCitationOzarowski, A., Calzado, C.J., Sharma, R.P., Kumar, S., Jezierska, J., Angeli, C., Spizzo, F., Ferretti, V., Metal–metal interactions in trinuclear copper(II) complexes [Cu3(RCOO)4(H2tea)2] and binuclear [Cu2(RCOO)2(H2tea)2]. Syntheses and combined structural, magnetic, high-field electron paramagnetic resonance, and theoretical studies (2015) Inorg. Chem., 54, pp. 11916-11934
dcterms.bibliographicCitationOzarowski, A., The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative (2008) Inorg. Chem., 47, pp. 9760-9762
dcterms.bibliographicCitationNesterova, O.V., Nesterov, D.S., Jezierska, J., Pombeiro, A.J.L., Ozarowski, A., Copper(II) complexes with bulky n-substituted diethanolamines: High-field electron paramagnetic resonance, magnetic, and catalytic studies in oxidative cyclohexane amidation (2018) Inorg. Chem., 57, pp. 12384-12397
dcterms.bibliographicCitationReger, D.L., Pascui, A.E., Foley, E.A., Smith, M.D., Jezierska, J., Wojciechowska, A., Stoian, S.A., Ozarowski, A., Dinuclear metallacycles with single M–X–M bridges (X = Cl–, Br–
dcterms.bibliographicCitationM = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)): Strong antiferromagnetic superexchange interactions (2017) Inorg. Chem., 56, pp. 2884-2901
dcterms.bibliographicCitationEisenberg, R., Gray, H.B., Noninnocence in metal complexes: A dithiolene dawn (2011) Inorg. Chem., 50, pp. 9741-9751
dcterms.bibliographicCitationMcCleverty, J.A., Metal 1,2-dithiolene and related complexes (2007) Progress in Inorganic Chemistry, , Cotton, F.A., Ed.
dcterms.bibliographicCitationWiley Online Library: Hoboken, NJ, USA
dcterms.bibliographicCitationOlk, R.-M., Olk, B., Dietzsch, W., Kirmse, R., Hoyer, E., The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) (1992) Coord. Chem. Rev., 117, pp. 99-131
dcterms.bibliographicCitationSzilagyi, R.K., Lim, B.S., Glaser, T., Holm, R.H., Hedman, B., Hodgson, K.O., Solomon, E.I., Description of the ground state wave functions of ni dithiolenes using sulfur k-edge X-ray absorption spectroscopy (2003) J. Am. Chem. Soc., 125, pp. 9158-9169
dcterms.bibliographicCitationZapata-Rivera, J., Maynau, D., Calzado, C.J., Evaluation of the magnetic interactions in salts containing [ni(dmit)2]− Radical anions (2017) Chem. Mater., 29, pp. 4317-4329
dcterms.bibliographicCitationSarangi, R., DeBeer George, S., Rudd, D.J., Szilagyi, R.K., Ribas, X., Rovira, C., Almeida, M., Solomon, E.I., Sulfur k-edge X-ray absorption spectroscopy as a probe of ligand–metal bond covalency: Metal vs ligand oxidation in copper and nickel dithiolene complexes (2007) J. Am. Chem. Soc., 129, pp. 2316-2326
dcterms.bibliographicCitationStach, J., Kirmse, R., Dietzsch, W., Olk, R.M., Hoyer, E., Single-crystal EPR spectra of tetra-n-butylammonium bis(isotrithione-3,4-dithiolato)cuprate(II) (1984) Inorg. Chem., 23, pp. 4779-4780
dcterms.bibliographicCitationRosa, A., Ricciardi, G., Baerends, E.J., Structural properties of M(dmit)2-based (M = Ni, Pd, Pt
dcterms.bibliographicCitationdmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolato) molecular metals. Insights from density functional calculations (1998) Inorg. Chem., 37, pp. 1368-1379
dcterms.bibliographicCitationHoffmann, S.K., Goslar, J., Lijewski, S., Tadyszak, K., Zalewska, A., Jankowska, A., Florczak, P., Kowalak, S., EPR and UV-Vis study on solutions of Cu(II) dmit complexes and the complexes entrapped in zeolite Z and ZIF-Cu(IM)2 (2014) Microporous Mesoporous Mater, 186, pp. 57-64
dcterms.bibliographicCitationKirmse, R., Stach, J., Dietzsch, W., Steimecke, G., Hoyer, E., Single-crystal epr studies on nickel(III), palladium(III), and platinum(III) dithiolene chelates containing the ligands isotrithionedithiolate, o-xylenedithiolate, and maleonitriledithiolate (1980) Inorg. Chem., 19, pp. 2679-2685
dcterms.bibliographicCitationCabrero, J., Calzado, C.J., Maynau, D., Caballol, R., Malrieu, J.P., Metal-ligand delocalization in magnetic orbitals of binuclear complexes (2002) J. Phys. Chem. A, 106, pp. 8146-8155
dcterms.bibliographicCitationCalzado, C.J., Malrieu, J.P., Proposal of an extended t-j hamiltonian for high-t-c cuprates from ab initio calculations on embedded clusters (2001) Phys. Rev. B, 63
dcterms.bibliographicCitationGellé, A., Munzarová, M.L., Lepetit, M.-B., Illas, F., Role of dynamical polarization of the ligand-to-metal charge transfer excitations in ab initio determination of effective exchange parameters (2003) Phys. Rev. B, 68, p. 125103
dcterms.bibliographicCitationTenti, L., Maynau, D., Angeli, C., Calzado, C.J., Highly efficient perturbative plus variational strategy based on orthogonal valence bond theory for the evaluation of magnetic coupling constants. Application to the trinuclear Cu(II) site of multicopper oxidases (2016) Phys. Chem. Chem. Phys., 18, pp. 18365-18380
dcterms.bibliographicCitationGiner, E., Angeli, C., Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal (2016) J. Chem. Phys., 144, p. 104104
dcterms.bibliographicCitationGiner, E., Angeli, C., Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4]2− molecules: Some insights from wave function theory (2015) J. Chem. Phys., 143, p. 124305
dcterms.bibliographicCitationBaker, G.A., Jr., Rushbrooke, G.S., Gilbert, H.E., High-temperature series expansions for the spin-1/2 heisenberg model by the method of irreducible representations of the symmetric group (1964) Phys. Rev., 135, pp. A1272-A1277
dcterms.bibliographicCitationRoos, B.O., (1987) The Complete Active Space Self-Consistent Field Method and Its Applications in Electronic Structure Calculations, , John Wiley & Sons: Hoboken, NJ, USA
dcterms.bibliographicCitationAndersson, K., Per-Ake, M., Roos, B.O., Second-order perturbation theory with a complete active space self-consistent field reference function (1992) J. Chem. Phys., 96, pp. 1218-1226
dcterms.bibliographicCitationFinley, J., Malmqvist, P.-Å., Roos, B.O., Serrano-Andrés, L., The multi-state caspt2 method (1998) Chem. Phys. Lett., 288, pp. 299-306
dcterms.bibliographicCitationMalmqvist, P.-A.K., Roos, B.O., Schimmelpfennig, B., The restricted active space (ras) state interaction approach with spin–orbit coupling (2002) Chem. Phys. Lett., 357, pp. 230-240
dcterms.bibliographicCitationMiralles, J., Castell, O., Caballol, R., Malrieu, J.-P., Specific ci calculation of energy differences: Transition energies and bond energies (1993) Chem. Phys., 172, pp. 33-43
dcterms.bibliographicCitationMiralles, J., Daudey, J.-P., Caballol, R., Variational calculation of small energy differences. The singlet-triplet gap in [cu2cl6]2− (1992) Chem. Phys. Lett., 198, pp. 555-562
dcterms.bibliographicCitationMalrieu, J.P., Caballol, R., Calzado, C.J., De Graaf, C., Guihery, N., Magnetic interactions in molecules and highly correlated materials: Physical content, analytical derivation, and rigorous extraction of magnetic hamiltonians (2014) Chem. Rev., 114, pp. 429-492
dcterms.bibliographicCitationRoos, B.O., Lindh, R., Malmqvist, P.A., Veryazov, V., Widmark, P.O., New relativistic ano basis sets for transition metal atoms (2005) J. Phys. Chem. A, 109, pp. 6575-6579
dcterms.bibliographicCitationRoos, B.O., Lindh, R., Malmqvist, P.A., Veryazov, V., Widmark, P.O., Main group atoms and dimers studied with a new relativistic ano basis set (2004) J. Phys. Chem. A, 108, pp. 2851-2858
dcterms.bibliographicCitationAquilante, F., Autschbach, J., Carlson, R.K., Chibotaru, L.F., Delcey, M.G., De Vico, L., Fdez Galván, I., Gagliardi, L., Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table (2016) J. Comput. Chem., 37, pp. 506-541
dcterms.bibliographicCitationMaynau, D., (1998) Casdi Package Developed at The Laboratoire De Physique Quantique, , Université Paul Sabatier: Toulouse, France
dcterms.bibliographicCitationBen Amor, N., Maynau, D., Size-consistent self-consistent configuration interaction from a complete active space (1998) Chem. Phys. Lett., 286, pp. 211-220
dc.subject.keywordsCASSCF/CASPT2 calculations
dc.subject.keywordsDmit radicals
dc.subject.keywordsSpin control
dc.subject.keywordsUV–Vis spectrum
dc.subject.keywordsElectron spin resonance
dc.subject.keywordsQuantum theory
dc.subject.keywordsElectron Spin Resonance Spectroscopy
dc.subject.keywordsQuantum theory
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as