Mostrar el registro sencillo del ítem

dc.creatorMontoya, O.D.
dc.creatorGil-González, Walter
dc.date.accessioned2019-11-06T19:05:09Z
dc.date.available2019-11-06T19:05:09Z
dc.date.issued2019
dc.identifier.citationEngineering Science and Technology, an International Journal
dc.identifier.issn2215-0986
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8722
dc.description.abstractThis paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk Universityeng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6
dc.sourceScopus 56919564100
dc.sourceScopus 57191493648
dc.titleNonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
dcterms.bibliographicCitationBapiraju, B., Srinivas, K.N., Kumar, P.P., Behera, L., On balancing control strategies for a reaction wheel pendulum (2004) Proceedings of the IEEE INDICON 2004. First India Annual Conference, pp. 199-204
dcterms.bibliographicCitationBlock, D.J., Åström, K.J., Spong, M.W., The reaction wheel pendulum (2007) Synth. Lectures Control Mech., 1 (1), pp. 1-105
dcterms.bibliographicCitationCorrea, V.D., Escobar, D.G.A., Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme (2017) TecnoLogicas, 20 (39), pp. 1-13
dcterms.bibliographicCitationDing, B., Ding, C., Recurrence and LaSalle invariance principle (2016) Syst. Control Lett., 93, pp. 64-68
dcterms.bibliographicCitationEl-Nagar, A.M., El-Bardini, M., Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller (2014) Ain Shams Eng. J., 5 (2), pp. 475-487
dcterms.bibliographicCitationEl-Nagar, A.M., El-Bardini, M., EL-Rabaie, N.M., Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller (2014) Alexandria Eng. J., 53 (1), pp. 23-32
dcterms.bibliographicCitationIrfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J., Advanced sliding mode control techniques for Inverted Pendulum: modelling and simulation (2018) Eng. Sci. Technol. Int. J., 21 (4), pp. 753-759
dcterms.bibliographicCitationKhalil, H., Nonlinear Systems. Always Learning (2013), Pearson Education, Limited
dcterms.bibliographicCitationLee, J., Mukherjee, R., Khalil, H.K., Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties (2015) Automatica, 54, pp. 146-157
dcterms.bibliographicCitationLin, K.-J., Stabilization of uncertain fuzzy control systems via a new descriptor system approach (2012) Comput. Math. Appl., 64 (5), pp. 1170-1178
dcterms.bibliographicCitationLiu, Y., Yu, H., A survey of underactuated mechanical systems (2013) IET Control Theory Appl., 7 (7), pp. 921-935
dcterms.bibliographicCitationMahmoodabadi, M., Jahanshahi, H., Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems (2016) Eng. Sci. Technol. Int. J., 19 (2), pp. 1084-1098
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., Correa-Ramírez, V.D., Giraldo-Buitrago, D., Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables (2014) Tecno Lógicas, 17 (32), pp. 33-46
dcterms.bibliographicCitationMontoya, O.D., Ramírez, C.A., Grisales, L.F., Global control of reaction wheel pendulum using artificial neural networks and extended linearization (2017) Sci. Tech., 22 (20), pp. 130-140
dcterms.bibliographicCitationOlivares, M., Albertos, P., Linear control of the flywheel inverted pendulum (2014) ISA Trans., 53 (5), pp. 1396-1403. , iCCA 2013
dcterms.bibliographicCitationPerko, L., Differential Equations and Dynamical Systems. Texts in Applied Mathematics (2013), Springer New York
dcterms.bibliographicCitationRyalat, M., Laila, D.S., A simplified IDA-PBC design for underactuated mechanical systems with applications (2016) Eur. J. Control, 27, pp. 1-16
dcterms.bibliographicCitationSanfelice, R.G., On the existence of control Lyapunov functions and state-feedback laws for hybrid systems (2013) IEEE Trans. Automat. Control, 58 (12), pp. 3242-3248
dcterms.bibliographicCitationSpong, M.W., Corke, P., Lozano, R., Nonlinear control of the reaction wheel pendulum (2001) Automatica, 37 (11), pp. 1845-1851
dcterms.bibliographicCitationSrinivas, K., Behera, L., Swing-up control strategies for a reaction wheel pendulum (2008) Int. J. Syst. Sci., 39 (12), pp. 1165-1177
dcterms.bibliographicCitationValenzuela, J.G., Montoya, O.D., Giraldo-Buitrago, D., Local control of reaction wheel pendulum using fuzzy logic (2013) Sci. Tech., 18 (4), pp. 623-632
dcterms.bibliographicCitationVidyasagar, M., Nonlinear Systems Analysis (2002), SIAM
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1016/j.jestch.2019.03.004
dc.subject.keywordsControl Lyapunov functions
dc.subject.keywordsFeedback control
dc.subject.keywordsProportional-integral-derivative
dc.subject.keywordsReaction wheel pendulum
dc.subject.keywordsStability analysis
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.