Mostrar el registro sencillo del ítem
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
dc.creator | Montoya, O.D. | |
dc.creator | Gil-González, Walter | |
dc.date.accessioned | 2019-11-06T19:05:09Z | |
dc.date.available | 2019-11-06T19:05:09Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Engineering Science and Technology, an International Journal | |
dc.identifier.issn | 2215-0986 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8722 | |
dc.description.abstract | This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk University | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6 | |
dc.source | Scopus 56919564100 | |
dc.source | Scopus 57191493648 | |
dc.title | Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach | |
dcterms.bibliographicCitation | Bapiraju, B., Srinivas, K.N., Kumar, P.P., Behera, L., On balancing control strategies for a reaction wheel pendulum (2004) Proceedings of the IEEE INDICON 2004. First India Annual Conference, pp. 199-204 | |
dcterms.bibliographicCitation | Block, D.J., Åström, K.J., Spong, M.W., The reaction wheel pendulum (2007) Synth. Lectures Control Mech., 1 (1), pp. 1-105 | |
dcterms.bibliographicCitation | Correa, V.D., Escobar, D.G.A., Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme (2017) TecnoLogicas, 20 (39), pp. 1-13 | |
dcterms.bibliographicCitation | Ding, B., Ding, C., Recurrence and LaSalle invariance principle (2016) Syst. Control Lett., 93, pp. 64-68 | |
dcterms.bibliographicCitation | El-Nagar, A.M., El-Bardini, M., Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller (2014) Ain Shams Eng. J., 5 (2), pp. 475-487 | |
dcterms.bibliographicCitation | El-Nagar, A.M., El-Bardini, M., EL-Rabaie, N.M., Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller (2014) Alexandria Eng. J., 53 (1), pp. 23-32 | |
dcterms.bibliographicCitation | Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J., Advanced sliding mode control techniques for Inverted Pendulum: modelling and simulation (2018) Eng. Sci. Technol. Int. J., 21 (4), pp. 753-759 | |
dcterms.bibliographicCitation | Khalil, H., Nonlinear Systems. Always Learning (2013), Pearson Education, Limited | |
dcterms.bibliographicCitation | Lee, J., Mukherjee, R., Khalil, H.K., Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties (2015) Automatica, 54, pp. 146-157 | |
dcterms.bibliographicCitation | Lin, K.-J., Stabilization of uncertain fuzzy control systems via a new descriptor system approach (2012) Comput. Math. Appl., 64 (5), pp. 1170-1178 | |
dcterms.bibliographicCitation | Liu, Y., Yu, H., A survey of underactuated mechanical systems (2013) IET Control Theory Appl., 7 (7), pp. 921-935 | |
dcterms.bibliographicCitation | Mahmoodabadi, M., Jahanshahi, H., Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems (2016) Eng. Sci. Technol. Int. J., 19 (2), pp. 1084-1098 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., Correa-Ramírez, V.D., Giraldo-Buitrago, D., Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables (2014) Tecno Lógicas, 17 (32), pp. 33-46 | |
dcterms.bibliographicCitation | Montoya, O.D., Ramírez, C.A., Grisales, L.F., Global control of reaction wheel pendulum using artificial neural networks and extended linearization (2017) Sci. Tech., 22 (20), pp. 130-140 | |
dcterms.bibliographicCitation | Olivares, M., Albertos, P., Linear control of the flywheel inverted pendulum (2014) ISA Trans., 53 (5), pp. 1396-1403. , iCCA 2013 | |
dcterms.bibliographicCitation | Perko, L., Differential Equations and Dynamical Systems. Texts in Applied Mathematics (2013), Springer New York | |
dcterms.bibliographicCitation | Ryalat, M., Laila, D.S., A simplified IDA-PBC design for underactuated mechanical systems with applications (2016) Eur. J. Control, 27, pp. 1-16 | |
dcterms.bibliographicCitation | Sanfelice, R.G., On the existence of control Lyapunov functions and state-feedback laws for hybrid systems (2013) IEEE Trans. Automat. Control, 58 (12), pp. 3242-3248 | |
dcterms.bibliographicCitation | Spong, M.W., Corke, P., Lozano, R., Nonlinear control of the reaction wheel pendulum (2001) Automatica, 37 (11), pp. 1845-1851 | |
dcterms.bibliographicCitation | Srinivas, K., Behera, L., Swing-up control strategies for a reaction wheel pendulum (2008) Int. J. Syst. Sci., 39 (12), pp. 1165-1177 | |
dcterms.bibliographicCitation | Valenzuela, J.G., Montoya, O.D., Giraldo-Buitrago, D., Local control of reaction wheel pendulum using fuzzy logic (2013) Sci. Tech., 18 (4), pp. 623-632 | |
dcterms.bibliographicCitation | Vidyasagar, M., Nonlinear Systems Analysis (2002), SIAM | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.identifier.doi | 10.1016/j.jestch.2019.03.004 | |
dc.subject.keywords | Control Lyapunov functions | |
dc.subject.keywords | Feedback control | |
dc.subject.keywords | Proportional-integral-derivative | |
dc.subject.keywords | Reaction wheel pendulum | |
dc.subject.keywords | Stability analysis | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.type.spa | Artículo |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.