Mostrar el registro sencillo del ítem

dc.creatorDomínguez-Jiménez, J.A.
dc.creatorCampo Landines, Kiara
dc.creatorMartínez-Santos, J.C.
dc.creatorDe la Hoz Domínguez, Enrique José
dc.creatorContreras Ortiz, Sonia Helena
dc.date.accessioned2019-11-06T19:05:08Z
dc.date.available2019-11-06T19:05:08Z
dc.date.issued2020
dc.identifier.citationBiomedical Signal Processing and Control; Vol. 55
dc.identifier.issn1746-8094
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8721
dc.description.abstractEmotions are affective states related to physiological responses. This study proposes a model for recognition of three emotions: amusement, sadness, and neutral from physiological signals with the purpose of developing a reliable methodology for emotion recognition using wearable devices. Target emotions were elicited in 37 volunteers using video clips while two biosignals were recorded: photoplethysmography, which provides information about heart rate, and galvanic skin response. These signals were analyzed in frequency and time domains to obtain a set of features. Several feature selection techniques and classifiers were evaluated. The best model was obtained with random forest recursive feature elimination, for feature selection, and a support vector machine for classification. The results show that it is possible to detect amusement, sadness, and neutral emotions using only galvanic skin response features. The system was able to recognize the three target emotions with accuracy up to 100% when evaluated on the test data set. © 2019 Elsevier Ltdeng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85071578602&doi=10.1016%2fj.bspc.2019.101646&partnerID=40&md5=63d872ed4ecb63c81664f7c8671b3758
dc.sourceScopus 56682770100
dc.sourceScopus 57205565967
dc.sourceScopus 57210951365
dc.sourceScopus 57204201834
dc.sourceScopus 57210822856
dc.titleA machine learning model for emotion recognition from physiological signals
dcterms.bibliographicCitationEkman, P., An argument for basic emotions (1992) Cogn. Emot., 6 (3-4), pp. 169-200
dcterms.bibliographicCitationScherer, K.R., Ekman, P., Approaches to Emotion (1984), Psychology Press
dcterms.bibliographicCitationLang, P.J., The emotion probe: studies of motivation and attention (1995) Am. Psychol., 50 (5), p. 372
dcterms.bibliographicCitationRussell, J.A., A circumplex model of affect (1980) J. Pers. Soc. Psychol., 39 (6), p. 1161
dcterms.bibliographicCitationJames, W., What is an emotion? (1884) Mind, 9 (34), pp. 188-205
dcterms.bibliographicCitationTato, R., Santos, R., Kompe, R., Pardo, J.M., Emotional space improves emotion recognition (2002) Seventh International Conference on Spoken Language Processing
dcterms.bibliographicCitationCowie, R., Cornelius, R.R., Describing the emotional states that are expressed in speech (2003) Speech Commun., 40 (1-2), pp. 5-32
dcterms.bibliographicCitationTurk, M.A., Pentland, A.P., Face recognition using eigenfaces (1991) IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91, IEEE, pp. 586-591
dcterms.bibliographicCitationAtkinson, A.P., Tunstall, M.L., Dittrich, W.H., Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures (2007) Cognition, 104 (1), pp. 59-72
dcterms.bibliographicCitationHeraz, A., Clynes, M., Recognition of emotions conveyed by touch through force-sensitive screens: observational study of humans and machine learning techniques (2018) JMIR Mental Health, 5 (3)
dcterms.bibliographicCitationSebe, N., Cohen, I., Huang, T.S., Multimodal emotion recognition (2005) Handbook of Pattern Recognition and Computer Vision, pp. 387-409. , World Scientific
dcterms.bibliographicCitationSoleymani, M., Pantic, M., Pun, T., Multimodal emotion recognition in response to videos (2012) IEEE Trans. Affect. Comput., 3 (2), pp. 211-223
dcterms.bibliographicCitationAlaoui-Ismaïli, O., Robin, O., Rada, H., Dittmar, A., Vernet-Maury, E., Basic emotions evoked by odorants: comparison between autonomic responses and self-evaluation (1997) Physiol. Behav., 62 (4), pp. 713-720
dcterms.bibliographicCitationLevenson, R.W., Carstensen, L.L., Friesen, W.V., Ekman, P., Emotion, physiology, and expression in old age (1991) Psychol. Aging, 6 (1), p. 28
dcterms.bibliographicCitationChristie, I.C., Friedman, B.H., Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach (2004) Int. J. Psychophysiol., 51 (2), pp. 143-153
dcterms.bibliographicCitationPicard, R.W., Healey, J., Affective wearables (1997) Pers. Technol., 1 (4), pp. 231-240
dcterms.bibliographicCitationScheirer, J., Fernandez, R., Picard, R.W., Expression glasses: a wearable device for facial expression recognition (1999) CHI'99 Extended Abstracts on Human Factors in Computing Systems, ACM, pp. 262-263
dcterms.bibliographicCitationHaag, A., Goronzy, S., Schaich, P., Williams, J., Emotion recognition using bio-sensors: first steps towards an automatic system (2004) Tutorial and Research Workshop on Affective Dialogue Systems, Springer, pp. 36-48
dcterms.bibliographicCitationHui, T., Sherratt, R., Coverage of emotion recognition for common wearable biosensors (2018) Biosensors, 8 (2), p. 30
dcterms.bibliographicCitationBailon, C., Damas, M., Pomares, H., Sanabria, D., Perakakis, P., Goicoechea, C., Banos, O., Intelligent monitoring of affective factors underlying sport performance by means of wearable and mobile technology (2018) Proceedings, 2 (19), p. 1202
dcterms.bibliographicCitationPopat, K.A., Sharma, P., Wearable computer applications a future perspective (2013) Int. J. Eng. Innov. Technol., 3 (1), pp. 213-217
dcterms.bibliographicCitationJhajharia, S., Pal, S., Verma, S., Wearable computing and its application (2014) Int. J. Comput. Sci. Inform. Technol., 5 (4), pp. 5700-5704
dcterms.bibliographicCitationJeong, I.C., Bychkov, D., Searson, P., Wearable devices for precision medicine and health state monitoring (2018) IEEE Trans. Biomed. Eng., p. 1
dcterms.bibliographicCitationGouizi, K., Bereksi Reguig, F., Maaoui, C., Emotion recognition from physiological signals (2011) J. Med. Eng. Technol., 35 (6-7), pp. 300-307
dcterms.bibliographicCitationUdovičić, G., erek, J., Russo, M., Sikora, M., Wearable emotion recognition system based on GSR and PPG signals (2017) Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care, ACM, pp. 53-59
dcterms.bibliographicCitationLiu, M., Fan, D., Zhang, X., Gong, X., Human emotion recognition based on galvanic skin response signal feature selection and SVM (2016) 2016 International Conference on Smart City and Systems Engineering (ICSCSE), pp. 157-160. , IEEE Hunan, China
dcterms.bibliographicCitationAyata, D., Yaslan, Y., Kamasak, M.E., Emotion based music recommendation system using wearable physiological sensors (2018) IEEE Trans. Consumer Electron., 64 (2), pp. 196-203
dcterms.bibliographicCitationBalasubramanian, G., Kanagasabai, A., Mohan, J., Seshadri, N.G., Music induced emotion using wavelet packet decomposition – An EEG study (2018) Biomed. Signal Process. Control, 42, pp. 115-128
dcterms.bibliographicCitationDomínguez-Jiménez, J., Campo-Landines, K., Martínez-Santos, J., Contreras-Ortiz, S., Emotion detection through biomedical signals: a pilot study (2018) 14th International Symposium on Medical Information Processing and Analysis, vol. 10975, International Society for Optics and Photonics, p. 1097506
dcterms.bibliographicCitationSchaefer, A., Nils, F., Sanchez, X., Philippot, P., Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers (2010) Cogn. Emot., 24 (7), pp. 1153-1172
dcterms.bibliographicCitationCollet, C., Vernet-Maury, E., Delhomme, G., Dittmar, A., Autonomic nervous system response patterns specificity to basic emotions (1997) J. Auton. Nerv. Syst., 62 (1-2), pp. 45-57
dcterms.bibliographicCitationMcCleary, R.A., The nature of the galvanic skin response (1950) Psychol. Bull., 47 (2), p. 97
dcterms.bibliographicCitationMundy-Castle, A., McKiever, B., The psychophysiological significance of the galvanic skin response (1953) J. Exp. Psychol., 46 (1), p. 15
dcterms.bibliographicCitationLang, P.J., Bradley, M.M., Cuthbert, B.N., A motivational analysis of emotion: reflex–cortex connections (1992) Psychol. Sci., 3 (1), pp. 44-49
dcterms.bibliographicCitationBradley, M.M., Lang, P.J., Affective reactions to acoustic stimuli (2000) Psychophysiology, 37 (2), pp. 204-215
dcterms.bibliographicCitationAppelhans, B.M., Luecken, L.J., Heart rate variability as an index of regulated emotional responding (2006) Rev. Gen. Psychol., 10 (3), p. 229
dcterms.bibliographicCitationAyata, D.D., Yaslan, Y., Kamaşak, M., Emotion recognition via galvanic skin response: Comparison of machine learning algorithms and feature extraction methods (2017) Istanbul Univ.-J. Electr. Electron. Eng., 17 (1), pp. 3147-3156
dcterms.bibliographicCitationChen, H.-K., Hu, Y.-F., Lin, S.-F., Methodological considerations in calculating heart rate variability based on wearable device heart rate samples (2018) Comput. Biol. Med., 102, pp. 396-401
dcterms.bibliographicCitationShaffer, F., Ginsberg, J., An overview of heart rate variability metrics and norms (2017) Front. Public Health, 5, p. 258
dcterms.bibliographicCitationvon Rosenberg, W., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., Mandic, D.P., Resolving ambiguities in the lf/hf ratio: lf-hf scatter plots for the categorization of mental and physical stress from hrv (2017) Front. Physiol., 8, p. 360
dcterms.bibliographicCitationTsai, C.-F., Feature selection in bankruptcy prediction (2009) Knowl.-Based Syst., 22 (2), pp. 120-127
dcterms.bibliographicCitationNiu, X., Chen, L., Chen, Q., Research on genetic algorithm based on emotion recognition using physiological signals (2011) 2011 International Conference on Computational Problem-Solving (ICCP), IEEE, pp. 614-618
dcterms.bibliographicCitationZvarevashe, K., Olugbara, O.O., Gender voice recognition using random forest recursive feature elimination with gradient boosting machines (2018) 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), IEEE, pp. 1-6
dcterms.bibliographicCitationGen, M., Cheng, R., (2000) Genetic Algorithms and Engineering Optimization, 7. , John Wiley & Sons
dcterms.bibliographicCitationGoldberg, D.E., Holland, J.H., Genetic algorithms and machine learning (1988) Mach. Learn., 3 (2), pp. 95-99
dcterms.bibliographicCitationMiguel, F.K., Psicologia das emoç oes: uma proposta integrativa para compreender a express ao emocional (2015) Psico-usf, 20 (1), pp. 153-162
dcterms.bibliographicCitationReeve, J., Understanding Motivation and Emotion (1993), p. 13
dcterms.bibliographicCitationEkman, P., Friesen, W.V., The repertoire of nonverbal behavior: Categories, origins, usage, and coding (1969) Semiotica, 1 (1), pp. 49-98
dcterms.bibliographicCitationAkosa, J., Predictive accuracy: a misleading performance measure for highly imbalanced data (2017) Proceedings of the SAS Global Forum
dcterms.bibliographicCitationSun, Y., Wong, A.K., Kamel, M.S., Classification of imbalanced data: a review (2009) Int. J. Pattern Recogn. Artif. Intell., 23 (4), pp. 687-719
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.bspc.2019.101646
dc.subject.keywordsAffective computing
dc.subject.keywordsBiosignal processing
dc.subject.keywordsEmotion recognition
dc.subject.keywordsMachine learning
dc.subject.keywordsPhysiological signals
dc.subject.keywordsDecision trees
dc.subject.keywordsElectrophysiology
dc.subject.keywordsFeature extraction
dc.subject.keywordsLearning systems
dc.subject.keywordsMachine learning
dc.subject.keywordsPhysiological models
dc.subject.keywordsSpeech recognition
dc.subject.keywordsStatistical tests
dc.subject.keywordsSupport vector machines
dc.subject.keywordsTime domain analysis
dc.subject.keywordsAffective computing
dc.subject.keywordsBio-signal processing
dc.subject.keywordsEmotion recognition
dc.subject.keywordsFrequency and time domains
dc.subject.keywordsMachine learning models
dc.subject.keywordsPhysiological response
dc.subject.keywordsPhysiological signals
dc.subject.keywordsRandom forest-recursive feature eliminations
dc.subject.keywordsBiomedical signal processing
dc.subject.keywordsAdult
dc.subject.keywordsArticle
dc.subject.keywordsClinical article
dc.subject.keywordsElectrodermal response
dc.subject.keywordsFeature selection
dc.subject.keywordsFemale
dc.subject.keywordsHeart rate
dc.subject.keywordsHuman
dc.subject.keywordsHuman experiment
dc.subject.keywordsMale
dc.subject.keywordsPhotoelectric plethysmography
dc.subject.keywordsRandom forest
dc.subject.keywordsRecursive feature elimination
dc.subject.keywordsSadness
dc.subject.keywordsSupport vector machine
dc.subject.keywordsVideorecording
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.