Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.date.accessioned2025-01-13T18:37:58Z
dc.date.available2025-01-13T18:37:58Z
dc.date.issued2025-01-13
dc.date.submitted2025-01-13
dc.identifier.citationSierra-Porta, D. (2024). Multifractal detrended cross-correlation coefficient for cosmic ray and sunspot time series. Journal of Atmospheric and Solar-Terrestrial Physics, 106407. 10.1016/j.jastp.2024.106407spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13224
dc.description.abstractThis study delves into the multifractal cross-correlations between cosmic ray intensity and sunspot numbers, addressing the shortcomings of traditional correlation analyses that often fail to capture the intricate and multifractal nature of these time series. Cosmic rays and solar activity are critical components of space weather dynamics, and understanding their interactions is essential for predicting space weather events that can affect satellite operations, communication systems, and even climate on Earth. We employ Multifractal Detrended Cross-Correlation Analysis (MFDCCA) to explore these complex relationships across a range of time scales. Our methodology involves segmenting the time series into windows of varying lengths, from 50 to 3900 days, and calculating cross-correlation coefficients for different polynomial fitting orders and fluctuation orders , using polynomial orders of 2, 3, 4, and 5. This approach allows us to capture the multifractal properties and temporal dependencies within and between the series. Our analysis reveals significant multifractal correlations, with the highest correlation coefficient of 0.876 occurring for and polynomial order 2 with a lag of 57 days. The results demonstrate that higher polynomial orders result in more stable and robust coefficients, indicating stronger correlations on larger scales. These findings highlight the efficacy of advanced techniques like MFDCCA in uncovering the complex interactions between cosmic rays and solar activity, which are often missed by conventional methods. The implications of our study extend to the enhancement of space weather prediction models. By incorporating additional heliophysical variables such as solar wind conditions, interplanetary magnetic field data, and indices of coronal mass ejections or solar flares, future research can construct more comprehensive models that better capture the multifractal interactions governing these phenomena. This expanded understanding is crucial for improving the accuracy of space weather forecasts and mitigating the potential impacts of space weather events on technological and natural systems.spa
dc.format.extent13 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceJournal of Atmospheric and Solar-Terrestrial Physicsspa
dc.titleMultifractal detrended cross-correlation coefficient for cosmic ray and sunspot time seriesspa
dcterms.bibliographicCitationL. Del Rio Amador, S. Lovejoy, Long-range forecasting as a past value problem: Untangling correlations and causality with scaling, Geo327 physical Research Letters 48 (9) (2021) e2020GL092147. doi:https://doi.org/10.1029/2020GL092147.spa
dcterms.bibliographicCitation[2] L. Kristoufek, Multifractal height cross-correlation analysis: A new method for analyzing long-range cross-correlations, Europhysics Letters (6) (2011) 68001. doi:https://doi.org/10.1209/0295-5075/95/68001.spa
dcterms.bibliographicCitation[3] S. Arianos, A. Carbone, Cross-correlation of long-range correlated series, Journal of Statistical Mechanics: Theory and Experiment 2009 (03)(2009) P03037. doi:https://doi.org/10.1088/1742-5468/2009/03/P03037.spa
dcterms.bibliographicCitation[4] B. Podobnik, H. E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Physical Review Letters 100 (8) (2008) 084102. doi:https://doi.org/10.1103/PhysRevLett.100.084102.spa
dcterms.bibliographicCitation[5] D. Horvatic, H. E. Stanley, B. Podobnik, Detrended cross-correlation analysis for non-stationary time series with periodic trends, Europhysics Letters 94 (1) (2011) 18007. doi:https://doi.org/10.1209/0295-5075/94/18007.spa
dcterms.bibliographicCitation[6] F. Wang, J. Xu, Q. Fan, Statistical properties of the detrended multiple cross-correlation coefficient, Communications in Nonlinear Science and Numerical Simulation 99 (2021) 105781. doi:https://doi.org/10.1016/j.cnsns.2021.105781.spa
dcterms.bibliographicCitation[7] G. F. Zebende, Dcca cross-correlation coefficient: Quantifying level of cross-correlation, Physica A: Statistical Mechanics and its Applications 390 (4) (2011) 614–618. doi:https://doi.org/10.1016/j.physa.2010.10.022.spa
dcterms.bibliographicCitation[8] G. Zebende, A. da Silva Filho, Detrended multiple cross-correlation coefficient, Physica A: Statistical Mechanics and its Applications 510 (2018) 91–97. doi:https://doi.org/10.1016/j.physa.2018.06.119.spa
dcterms.bibliographicCitation[9] B. Podobnik, Z.-Q. Jiang, W.-X. Zhou, H. E. Stanley, Statistical tests for power-law cross-correlated processes, Physical Review E 84 (6) (2011) 066118. doi:https://doi.org/10.1103/PhysRevE.84.066118.spa
dcterms.bibliographicCitation[10] P. Ma, D. Li, S. Li, Efficiency and cross-correlation in equity market during global financial crisis: Evidence from china, Physica A: Statistical Mechanics and Its Applications 444 (2016) 163–176. doi:https://doi.org/10.1016/j.physa.2015.10.019.spa
dcterms.bibliographicCitation[11] M. Wkatorek, S. Drozd˙ z, J. Kwapie ˙ n, L. Minati, P. O ´ swikecimka, M. Stanuszek, Multiscale characteristics of the emerging global cryptocur- rency market, Physics Reports 901 (2021) 1–82. doi:https://doi.org/10.1016/j.physrep.2020.10.005.spa
dcterms.bibliographicCitation[12] S. Drozd˙ z, J. Kwapie ˙ n, P. O ´ swikecimka, T. Stanisz, M. Wkatorek, Complexity in economic and social systems: Cryptocurrency market at ´around covid-19, Entropy 22 (9) (2020) 1043. doi:https://doi.org/10.3390/e22091043.spa
dcterms.bibliographicCitation[13] G. Cao, C. He, W. Xu, Effect of weather on agricultural futures markets on the basis of dcca cross-correlation coefficient analysis, Fluctuation and Noise Letters 15 (02) (2016) 1650012. doi:https://doi.org/10.1142/S0219477516500127.spa
dcterms.bibliographicCitation[14] C.-h. Shen, C.-l. Li, Y.-l. Si, A detrended cross-correlation analysis of meteorological and api data in nanjing, china, Physica A: Statistical Mechanics and its Applications 419 (2015) 417–428. doi:https://doi.org/10.1016/j.physa.2014.10.058.spa
dcterms.bibliographicCitation[15] H. Tatli, S¸. S. Mentes¸, Detrended cross-correlation patterns between north atlantic oscillation and precipitation, Theoretical and Applied Climatology 138 (1) (2019) 387–397. doi:https://doi.org/10.1007/s00704-019-02827-7.spa
dcterms.bibliographicCitation[16] C. Zhang, Z. Ni, L. Ni, Multifractal detrended cross-correlation analysis between pm2. 5 and meteorological factors, Physica A: Statistical Mechanics and its Applications 438 (2015) 114–123. doi:https://doi.org/10.1016/j.physa.2015.06.039.spa
dcterms.bibliographicCitation[17] W. Xu, C. Liu, K. Shi, Y. Liu, Multifractal detrended cross-correlation analysis on no, no2 and o3 concentrations at traffic sites, Physica A: Statistical Mechanics and its Applications 502 (2018) 605–612. doi:https://doi.org/10.1016/j.physa.2018.02.114.spa
dcterms.bibliographicCitation[18] C. Varotsos, G. Golitsyn, M. Efstathiou, N. Sarlis, A new method of nowcasting extreme cosmic ray events, Remote Sensing Letters 14 (6) (2023) 576–584. doi:https://doi.org/10.1080/2150704X.2022.2057204.spa
dcterms.bibliographicCitation[19] C. Varotsos, G. Golitsyn, Y. Xue, M. Efstathiou, N. Sarlis, T. Voronova, On the relation between rain, clouds, and cosmic rays, Remote Sensing Letters 14 (3) (2023) 301–312. doi:https://doi.org/10.1080/2150704X.2023.2190468.spa
dcterms.bibliographicCitation[20] J. Christodoulakis, C. Varotsos, H. Mavromichalaki, M. Efstathiou, M. Gerontidou, On the link between atmospheric cloud parameters and cosmic rays, Journal of Atmospheric and Solar-Terrestrial Physics 189 (2019) 98–106. doi:https://doi.org/10.1016/j.jastp.2019.366 04.012.spa
dcterms.bibliographicCitation[21] S. Gopinath, P. Prince, Multifractal characteristics of magnetospheric dynamics and their relationship with sunspot cycle, Advances in Space Research 59 (9) (2017) 2265–2278. doi:https://doi.org/10.1016/j.asr.2017.02.011.spa
dcterms.bibliographicCitation[22] D. Sierra-Porta, A multifractal approach to understanding forbush decrease events: Correlations with geomagnetic storms and space weather phenomena, Chaos, Solitons & Fractals 185 (2024) 115089. doi:https://doi.org/10.1016/j.chaos.2024.115089spa
dcterms.bibliographicCitation[23] D. Sierra-Porta, A.-R. Dom´ınguez-Monterroza, Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis, Physica A: Statistical Mechanics and its Applications 607 (2022) 128159. doi:https://doi.org/10.1016/j.physa.2022.373 128159.spa
dcterms.bibliographicCitation[24] D. Sierra-Porta, Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques, Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (2) (2024). doi:https://doi.org/10.1063/376 5.0167156.spa
dcterms.bibliographicCitation[25] D. Sierra-Porta, On the fractal properties of cosmic rays and sun dynamics cross-correlations, Astrophysics and Space Science 367 (12) (2022) 116. doi:https://doi.org/10.1007/s10509-022-04151-5.spa
dcterms.bibliographicCitation[26] K. Iskra, M. Siluszyk, M. Alania, W. Wozniak, Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014, Solar Physics 294 (9) (2019) 115. doi:https://doi.org/10.1007/s11207-019-1509-4.spa
dcterms.bibliographicCitation[27] D. Sierra-Porta, Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23, Astrophysics and Space Science 363 (2018) 1–5. doi:https://doi.org/10.1007/s10509-018-3360-8.spa
dcterms.bibliographicCitation[28] J. Takalo, Extracting hale cycle related components from cosmic-ray data using principal component analysis, Solar Physics 297 (9) (2022)113. doi:https://doi.org/10.1007/s11207-022-02048-8.spa
dcterms.bibliographicCitation[29] S. A. Koldobskiy, R. Kahk ¨ onen, B. Hofer, N. A. Krivova, G. A. Kovaltsov, I. G. Usoskin, Time lag between cosmic-ray and so- ¨lar variability: Sunspot numbers and open solar magnetic flux, Solar Physics 297 (3) (2022) 38. doi:https://doi.org/10.1007/s11207-022-01970-1.spa
dcterms.bibliographicCitation[30] C. Idosa, A. Giri, B. Adhikari, E. Mosisa, C. Gashu, Variations of cosmic ray intensity with the solar flare index, coronal index, and geomag389 netic indices: Wavelet and cross correlation approaches, Physics of Plasmas 30 (8) (2023). doi:https://doi.org/10.1063/5.0157553.spa
dcterms.bibliographicCitation[31] R. Modzelewska, A. Krasinska, A. Wawrzaszek, A. Gil, Scaling features of diurnal variation of galactic cosmic rays, Solar Physics 296 (8) ´(2021) 125. doi:https://doi.org/10.1007/s11207-021-01866-6.spa
dcterms.bibliographicCitation[32] J. Kwapien, P. O ´ swikecimka, S. Dro ´ zd˙ z, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Physical ˙Review E 92 (5) (2015) 052815. doi:https://doi.org/10.1103/PhysRevE.92.052815.spa
dcterms.bibliographicCitation[33] G. Rice, M. Shum, Inference for the lagged cross-covariance operator between functional time series, Journal of Time Series Analysis 40 (5)(2019) 665–692. doi:https://doi.org/10.1111/jtsa.12447.spa
dcterms.bibliographicCitation[34] M. L. O. Salvana, M. G. Genton, Nonstationary cross-covariance functions for multivariate spatio-temporal random fields, Spatial Statistics 37 (2020) 100411. doi:https://doi.org/10.1016/j.spasta.2020.100411.spa
dcterms.bibliographicCitation[35] L. R. Gorjao, G. Hassan, J. Kurths, D. Witthaut, Mfdfa: Efficient multifractal detrended fluctuation analysis in python, Computer Physics Communications 273 (2022) 108254. doi:https://doi.org/10.1016/j.cpc.2021.108254.spa
dcterms.bibliographicCitation[36] X. Zhang, G. Zhang, L. Qiu, B. Zhang, Y. Sun, Z. Gui, Q. Zhang, A modified multifractal detrended fluctuation analysis (mfdfa) approach for multifractal analysis of precipitation in dongting lake basin, china, Water 11 (5) (2019) 891. doi:https://doi.org/10.3390/w11050891.spa
dcterms.bibliographicCitation[37] H. Mavromichalaki, A. Papaioannou, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, C. Plainaki, M. Papailiou, G. Mariatos, N. Team, Estab403 lishing and using the real-time neutron monitor database (nmdb), in: 9th International Conference of the Hellenic Astronomical Society, Vol. 424, 2010, p. 75.spa
dcterms.bibliographicCitation[38] D. Sapundjiev, T. Verhulst, S. Stankov, International database of neutron monitor measurements: Development and applications, in: Knowl406 edge Discovery in Big Data from Astronomy and Earth Observation, Elsevier, 2020, pp. 371–383. doi:https://doi.org/10.1016/B978-0-12-819154-5.00032-1.spa
dcterms.bibliographicCitation[39] C. Steigies, N. Fuller, et al., Accessing nmdb data using nest and pandas, in: NMDB@ Athens: Proceedings of the hybrid symposium on cosmic ray studies with neutron detectors, September 26-30, 2022, 2023, pp. 211–217. doi:https://doi.org/10.38072/2748-3150/p44.spa
dcterms.bibliographicCitation[40] SILSO World Data Center, The international sunspot number, International Sunspot Number Monthly Bulletin and online catalogue (1964-2024).spa
dcterms.bibliographicCitation[41] D. Sierra-Porta, Revised cross-correlation and time-lag between cosmic ray intensity and solar activity using chatterjee’s correlation coeffi414 cient, Advances in Space Research 75 (1) (2024). doi:https://doi.org/10.1016/j.asr.2024.10.065. URL https://www.sciencedirect.com/science/article/pii/S0273117724010974spa
dcterms.bibliographicCitation[42] K. Kudela, J. Rybak, A. Antalov ´ a, M. Storini, Time evolution of low-frequency periodicities in cosmic ray intensity, Solar Physics 205 (1) ´(2002) 165–175. doi:https://doi.org/10.1023/A:1013869322693.spa
dcterms.bibliographicCitation[43] P. Chowdhury, K. Kudela, Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017, Astrophysics and Space Science 363 (2018) 1–17. doi:https://doi.org/10.1007/s10509-018-3467-yspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.jastp.2024.106407
dc.subject.keywordsMultifractal detrended cross-correlation analysisspa
dc.subject.keywordsCosmic ray intensityspa
dc.subject.keywordsSunspot numbersspa
dc.subject.keywordsTime lag analysisspa
dc.subject.keywordsSpace weather dynamicsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.