Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera Acevedo, Daniel
dc.contributor.authorSierra Porta, David
dc.date.accessioned2025-01-13T18:36:36Z
dc.date.available2025-01-13T18:36:36Z
dc.date.issued2025-01-13
dc.date.submitted2025-01-13
dc.identifier.citationHerrera-Acevedo, D. D., & Sierra-Porta, D. (2024). Network structure and urban mobility sustainability: A topological analysis of cities from the urban mobility readiness index. Sustainable Cities and Society, 106076. https://doi.org/10.1016/j.scs.2024.106076spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13223
dc.description.abstractIn the context of rapid urbanization, efficient and sustainable urban mobility is critical. This study explores the impact of urban network structure and socio-demographic factors on Urban Mobility Readiness (UMRi) across 62 cities worldwide. Using complex network analysis, Principal Component Analysis, and multiple linear regression models, we identify significant relationships between network metrics — such as average node degree, clustering coefficient, and graph diameter — and urban mobility performance. Cities with denser, more interconnected networks tend to achieve higher UMRi scores, indicating better preparedness for modern mobility challenges. Our findings also highlight the importance of economic resources, with GDP per capita emerging as a significant predictor of UMRi. Cities with well-funded and well-designed transportation networks demonstrate stronger performance in terms of mobility readiness and sustainability. Conversely, cities with more dispersed networks face greater challenges in optimizing their transportation systems. These insights underscore the importance of compact, resilient networks that promote accessibility and efficiency. This study emphasizes the critical role of network structure in shaping urban mobility outcomes and offers strategic guidance for enhancing transportation systems in rapidly growing urban areas. Future research should focus on integrating emerging technologies, such as autonomous vehicles and smart city solutions, to further optimize urban mobility. This approach offers a novel perspective on how the structure of urban networks influences the sustainability and efficiency of public transport in diverse urban contexts.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceSustainable Cities and Societyspa
dc.titleNetwork structure and urban mobility sustainability: A topological analysis of cities from the urban mobility readiness indexspa
dcterms.bibliographicCitationAbdi, H., Williams, L.J., 2010. Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2, 433–459. doi:https: //doi.org/10.1002/wics.101.spa
dcterms.bibliographicCitationAbduljabbar, R.L., Liyanage, S., Dia, H., 2021. The role of micro-mobility in shaping sustainable cities: A systematic literature review. Transportation research part D: transport and environment 92, 102734. doi:https://doi.org/10.1016/j.trd.2021.102734.spa
dcterms.bibliographicCitationAhmed, U., Srivastava, G., Djenouri, Y., Lin, J.C.W., 2022. Knowledge graph based trajectory outlier detection in sustainable smart cities. Sustainable Cities and Society 78, 103580. doi:https://doi.org/10.1016/j.scs.2021.103580.spa
dcterms.bibliographicCitationAl-Malki, A., Madandola, M., Al Thani, S., Bayram, G., Al-Kandari, A., Furlan, R., 2024. Advancing urban mobility in the state of qatar—establishing a framework for autonomous vehicles in doha. Journal of Infrastructure, Policy and Development 8, 3051. doi:https: //doi.org/10.24294/jipd.v8i3.3051.spa
dcterms.bibliographicCitationAlessandretti, L., Natera Orozco, L.G., Saberi, M., Szell, M., Battiston, F., 2023. Multimodal urban mobility and multilayer transport networks. Environment and Planning B: Urban Analytics and City Science 50, 2038–2070. doi:https://doi.org/10.1177/23998083221108190.spa
dcterms.bibliographicCitationAlessandrini, A., Delle Site, P., Filippi, F., 2023. A new planning paradigm for urban sustainability. Transportation Research Procedia 69, 203–210. doi:https://doi.org/10.1016/j.trpro.2023.02.163.spa
dcterms.bibliographicCitationBadhrudeen, M., Derrible, S., Verma, T., Kermanshah, A., Furno, A., 2022. A geometric classification of world urban road networks. Urban Science 6, 11. doi:https://doi.org/10.3390/urbansci6010011.spa
dcterms.bibliographicCitationBardoscia, M., Barucca, P., Battiston, S., Caccioli, F., Cimini, G., Garlaschelli, D., Saracco, F., Squartini, T., Caldarelli, G., 2021. The physics of financial networks. Nature Reviews Physics 3, 490–507. doi:https://doi.org/10.1038/s42254-021-00322-5.spa
dcterms.bibliographicCitationBibri, S.E., Krogstie, J., Karrholm, M., 2020. Compact city planning and development: Emerging practices and strategies for achieving the goals ¨ of sustainability. Developments in the built environment 4, 100021. doi:https://doi.org/10.1016/j.dibe.2020.100021.spa
dcterms.bibliographicCitationBier, T., Lange, A., Glock, C.H., 2020. Methods for mitigating disruptions in complex supply chain structures: a systematic literature review. International Journal of Production Research 58, 1835–1856. doi:https://doi.org/10.1080/00207543.2019.1687954.spa
dcterms.bibliographicCitationBoccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U., 2006. Complex networks: Structure and dynamics. Physics reports 424, 175–308. doi:https://doi.org/10.1016/j.physrep.2005.10.009spa
dcterms.bibliographicCitationBoeing, G., 2017a. Osmnx: A python package to work with graph-theoretic openstreetmap street networks. Journal of Open Source Software 2. doi:https://doi.org/10.21105/joss.00215.spa
dcterms.bibliographicCitationBoeing, G., 2017b. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, environment and urban systems 65, 126–139. doi:https://doi.org/10.1016/j.compenvurbsys.2017.05.004.spa
dcterms.bibliographicCitationBro, R., Smilde, A.K., 2014. Principal component analysis. Analytical methods 6, 2812–2831. doi:https://doi.org/10.1039/C3AY41907J.spa
dcterms.bibliographicCitationBrohl, T., Lehnertz, K., 2019. Centrality-based identification of important edges in complex networks. Chaos: An Interdisciplinary Journal of ¨ Nonlinear Science 29. doi:https://doi.org/10.1063/1.5081098.spa
dcterms.bibliographicCitationCai, H., Zheng, V.W., Chang, K.C.C., 2018. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE transactions on knowledge and data engineering 30, 1616–1637. doi:https://doi.org/10.1109/TKDE.2018.2807452.spa
dcterms.bibliographicCitationCai, J., Li, R., Liu, Z., Liu, X., Wu, H., 2024. Quantifying spatial interaction centrality in urban population mobility: A mobility feature-and network topology-based locational measure. Sustainable Cities and Society 114, 105769. doi:https://doi.org/10.1016/j.scs.2024.105769.spa
dcterms.bibliographicCitationCeder, A., 2021. Urban mobility and public transport: future perspectives and review. International Journal of Urban Sciences 25, 455–479. doi:https://doi.org/10.1080/12265934.2020.1799846.spa
dcterms.bibliographicCitationChang, J., Nimer Kadry, S., Krishnamoorthy, S., 2020. Review and synthesis of big data analytics and computing for smart sustainable cities. IET Intelligent Transport Systems 14, 1363–1370. doi:https://doi.org/10.1049/iet-its.2020.0006.spa
dcterms.bibliographicCitationChaudhry, A.G., Masoumi, H., Dienel, H.L., 2023. A systematic literature review of mobility attitudes and mode choices: Mena and south asian cities. Frontiers in Sustainable Cities 4, 1085784. doi:https://doi.org/10.3389/frsc.2022.1085784spa
dcterms.bibliographicCitationChen, W., Wu, A.N., Biljecki, F., 2021. Classification of urban morphology with deep learning: Application on urban vitality. Computers, Environment and Urban Systems 90, 101706. doi:https://doi.org/10.1016/j.compenvurbsys.2021.101706.spa
dcterms.bibliographicCitationCheng, Z., Ouyang, M., Du, C., Zhang, H., Wang, N., Hong, L., 2023. Boundary effects on topological characteristics of urban road networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 33. doi:https://doi.org/10.1063/5.0145079.spa
dcterms.bibliographicCitationCordero, D., Rodriguez, G., 2022. Merger of network graph indicators to estimate resilience in latin american cities. IEEE Access 10, 81071–81093. doi:https://doi.org/10.1109/ACCESS.2022.3195894.spa
dcterms.bibliographicCitationCresswell, T., 2011. Mobilities i: catching up. Progress in human geography 35, 550–558. doi:https://doi.org/10.1177/ 0309132510383348.spa
dcterms.bibliographicCitationEstrada, E., 2012. The structure of complex networks: theory and applications. American Chemical Society. URL: https://strathprints. strath.ac.uk/id/eprint/34153.spa
dcterms.bibliographicCitationFarid, A.M., Viswanath, A., Al-Junaibi, R., Allan, D., Van der Wardt, T.J., 2021. Electric vehicle integration into road transportation, intelligent transportation, and electric power systems: an abu dhabi case study. Smart Cities 4, 1039–1057. doi:https://doi.org/10.3390/ smartcities4030055spa
dcterms.bibliographicCitationFolt‘ynova, H.B., Vejchodsk ´ a, E., Rybov ´ a, K., Kv ´ eto ˇ n, V., 2020. Sustainable urban mobility: One definition, di ˇ fferent stakeholders’ opinions. Transportation research part D: Transport and environment 87, 102465. doi:https://doi.org/10.1016/j.trd.2020.102465spa
dcterms.bibliographicCitationFranz, W., 2020. Algebraic topology. Walter de Gruyter GmbH & Co KG. doi:https://doi.org/10.1515/9783112318522.spa
dcterms.bibliographicCitationFriman, M., Lattman, K., Olsson, L.E., 2020. Public transport quality, safety, and perceived accessibility. Sustainability 12, 3563. doi: ¨ https: //doi.org/10.3390/su12093563.spa
dcterms.bibliographicCitationFurlan, R., Zaina, S., Patel, S., 2021. The urban regeneration’s framework for transit villages in qatar: The case of al sadd in doha. Environment, Development and Sustainability 23, 5920–5936. doi:https://doi.org/10.1007/s10668-020-00853-4.spa
dcterms.bibliographicCitationGallo, M., Marinelli, M., 2020. Sustainable mobility: A review of possible actions and policies. Sustainability 12, 7499. doi:https://doi.org/ 10.3390/su12187499spa
dcterms.bibliographicCitationGiblin, P., 2013. Graphs, surfaces and homology: an introduction to algebraic topology. Springer Science & Business Media. doi:https: //doi.org/10.1007/978-94-009-5953-8.spa
dcterms.bibliographicCitationGirardet, H., 2021. Sustainable cities: A contradiction in terms?, in: The earthscan reader in sustainable cities. Routledge, pp. 413–425. doi:https: //doi.org/10.4324/9781315800462.spa
dcterms.bibliographicCitationGrassi, Y.S., D´ıaz, M.F., 2024. Post-pandemic urban mobility in a medium-sized latin american city. is sustainable micro-mobility gaining ground? International Journal of Environmental Studies 81, 1579–1595. doi:https://doi.org/10.1080/00207233.2023.2195327spa
dcterms.bibliographicCitationGuzman, L.A., Arellana, J., Alvarez, V., 2020. Confronting congestion in urban areas: Developing sustainable mobility plans for public and private organizations in bogota. Transportation Research Part A: Policy and Practice 134, 321–335. doi: ´ https://doi.org/10.1016/j.tra.2020. 02.019spa
dcterms.bibliographicCitationHaseli, G., Bonab, S.R., Hajiaghaei-Keshteli, M., Ghoushchi, S.J., Deveci, M., 2024. Fuzzy ze-numbers framework in group decision-making using the bcm and cocoso to address sustainable urban transportation. Information Sciences 653, 119809. doi:https://doi.org/10.1016/ j.ins.2023.119809.spa
dcterms.bibliographicCitationHoornweg, D., Sugar, L., Gomez, C.L.T., 2020. Cities and greenhouse gas emissions: moving forward. Urbanisation 5, 43–62. doi:https: //doi.org/10.1177/0956247810392270.spa
dcterms.bibliographicCitationJacyna, M., Kotylak, P., 2020. Decision-making problems of collective transport development in terms of sustainable urban mobility. Journal of KONBiN 50, 359–375. doi:https://doi.org/10.2478/jok-2020-0044.spa
dcterms.bibliographicCitationJiang, Y., Han, Y., Liu, M., Ye, Y., 2022. Street vitality and built environment features: A data-informed approach from fourteen chinese cities. Sustainable cities and society 79, 103724. doi:https://doi.org/10.1016/j.scs.2022.103724.spa
dcterms.bibliographicCitationJimenez-Espada, M., Naranjo, J.M.V., Garc ´ ´ıa, F.M.M., 2022. Identification of mobility patterns in rural areas of low demographic density through stated preference surveys. Applied sciences 12, 10034. doi:https://doi.org/10.3390/app121910034.spa
dcterms.bibliographicCitationJolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences 374, 20150202. doi:https://doi.org/10.1098/rsta.2015.0202.spa
dcterms.bibliographicCitationKaiser, N., Barstow, C.K., 2022. Rural transportation infrastructure in low-and middle-income countries: a review of impacts, implications, and interventions. Sustainability 14, 2149. doi:https://doi.org/10.3390/su14042149.spa
dcterms.bibliographicCitationKaminski, B., Prałat, P., Theberge, F., 2021. Mining complex networks. Chapman and Hall ´ /CRC. doi:https://doi.org/10.1201/ 9781003218869.spa
dcterms.bibliographicCitationKandt, J., Batty, M., 2021. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 109, 102992. doi:https: //doi.org/10.1016/j.cities.2020.102992.spa
dcterms.bibliographicCitationKarimi, H., Ghadirifaraz, B., Shetab Boushehri, S.N., Hosseininasab, S.M., Rafiei, N., 2021. Reducing traffic congestion and increasing sustainability in special urban areas through one-way traffic reconfiguration. Transportation , 1–24doi:https://doi.org/10.1007/ s11116-020-10162-4.spa
dcterms.bibliographicCitationKhattak, F.W., Alhwaiti, Y.S., Ali, A., Faisal, M., Siddiqi, M.H., 2021. Protein-protein interaction analysis through network topology (oral cancer). Journal of Healthcare Engineering 2021. doi:https://doi.org/10.1155/2021/6623904.spa
dcterms.bibliographicCitationKim, J., Wilhelm, T., 2008. What is a complex graph? Physica A: Statistical Mechanics and its Applications 387, 2637–2652. doi:https: //doi.org/10.1016/j.physa.2008.01.015spa
dcterms.bibliographicCitationKovaciˇ c, M., Mutavd ´ zija, M., Buntak, K., 2022. New paradigm of sustainable urban mobility: Electric and autonomous vehicles—a review and ˇ bibliometric analysis. Sustainability 14, 9525. doi:https://doi.org/10.3390/su14159525spa
dcterms.bibliographicCitationLee, T.J., Kakehashi, M., Rao, A.S.S., 2021. Network models in epidemiology, in: Handbook of Statistics. Elsevier. volume 44, pp. 235–256. doi:https://doi.org/10.1016/bs.host.2020.09.002.spa
dcterms.bibliographicCitationLenormand, M., Samaniego, H., Chaves, J.C., da Fonseca Vieira, V., da Silva, M.A.H.B., Evsukoff, A.G., 2020. Entropy as a measure of attractiveness and socioeconomic complexity in rio de janeiro metropolitan area. Entropy 22, 368. doi:https://doi.org/10.3390/e22030368.spa
dcterms.bibliographicCitationLi, Z.T., Nie, W.P., Cai, S.M., Zhao, Z.D., Zhou, T., 2023. Exploring the topological characteristics of urban trip networks based on taxi trajectory data. Physica A: Statistical Mechanics and its Applications 609, 128391. doi:https://doi.org/10.1016/j.physa.2022.128391.spa
dcterms.bibliographicCitationLin, J., Ban, Y., 2013. Complex network topology of transportation systems. Transport reviews 33, 658–685. doi:https://doi.org/10.1080/ 01441647.2013.848955.spa
dcterms.bibliographicCitationLiu, J., Yuan, Y., 2024. Exploring dynamic urban mobility patterns from traffic flow data using community detection. Annals of GIS , 1– 20doi:https://doi.org/10.1080/19475683.2024.2324393.spa
dcterms.bibliographicCitationMaltese, I., Gatta, V., Marcucci, E., 2021. Active travel in sustainable urban mobility plans. an italian overview. Research in Transportation Business & Management 40, 100621. doi:https://doi.org/10.1016/j.rtbm.2021.100621.spa
dcterms.bibliographicCitationMantzaris, A.V., Chen, Y.H., Domenikos, G.R., Choudur, L., 2024. Exploring the effects of urban network topologies on entropy trajectories of segregation. Scientific Reports 14, 19188. doi:https://doi.org/10.1038/s41598-024-70029-x.spa
dcterms.bibliographicCitationMareeva, V.M., Ahmad, A.M., Ferwati, M.S., Garba, S.B., 2022. Sustainable urban regeneration of blighted neighborhoods: The case of al ghanim neighborhood, doha, qatar. Sustainability 14, 6963. doi:https://doi.org/10.3390/su14126963.spa
dcterms.bibliographicCitationMavlutova, I., Atstaja, D., Grasis, J., Kuzmina, J., Uvarova, I., Roga, D., 2023. Urban transportation concept and sustainable urban mobility in smart cities: a review. Energies 16, 3585. doi:https://doi.org/10.3390/en16083585spa
dcterms.bibliographicCitationMouratidis, K., 2021. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 115, 103229. doi:https://doi.org/10.1016/j.cities.2021.103229.spa
dcterms.bibliographicCitationMouratidis, K., Yiannakou, A., 2022. What makes cities livable? determinants of neighborhood satisfaction and neighborhood happiness in different contexts. Land use policy 112, 105855. doi:https://doi.org/10.1016/j.landusepol.2021.105855spa
dcterms.bibliographicCitationPark, J., Choi, J., Choi, J.Y., 2021. Network analysis in systems epidemiology. Journal of Preventive Medicine and Public Health 54, 259. doi:https://doi.org/10.3961\%2Fjpmph.21.190.spa
dcterms.bibliographicCitationPatil, P., 2021. Sustainable transportation planning: Strategies for reducing greenhouse gas emissions in urban areas. Empirical Quests for Management Essences 1, 116–129. URL: https://researchberg.com/index.php/eqme/article/view/121spa
dcterms.bibliographicCitationPedregosa, F., 2011. Scikit-learn: Machine learning in python fabian. Journal of machine learning research 12, 2825. doi:https://doi.org/ 10.48550/arXiv.1201.0490.spa
dcterms.bibliographicCitationPerozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701–710. doi:https://doi.org/10.1145/2623330.2623732spa
dcterms.bibliographicCitationPokharel, R., Bertolini, L., te Brommelstroet, M., 2023. How does transportation facilitate regional economic development? a heuristic mapping of ¨ the literature. Transportation Research Interdisciplinary Perspectives 19, 100817. doi:https://doi.org/10.1016/j.trip.2023.100817.spa
dcterms.bibliographicCitationPolterovich, L., Rosen, D., Samvelyan, K., Zhang, J., 2020. Topological persistence in geometry and analysis. volume 74. American Mathematical Soc. doi:https://doi.org/10.48550/arXiv.1904.04044.spa
dcterms.bibliographicCitationPorru, S., Misso, F.E., Pani, F.E., Repetto, C., 2020. Smart mobility and public transport: Opportunities and challenges in rural and urban areas. Journal of traffic and transportation engineering (English edition) 7, 88–97. doi:https://doi.org/10.1016/j.jtte.2019.10.002.spa
dcterms.bibliographicCitationPunzo, G., Panarello, D., Castellano, R., 2022. Sustainable urban mobility: evidence from three developed european countries. Quality & Quantity 56, 3135–3157. doi:https://doi.org/10.1007/s11135-021-01253-0.spa
dcterms.bibliographicCitationPurvis, B., Mao, Y., Robinson, D., 2019. Entropy and its application to urban systems. Entropy 21, 56. doi:https://doi.org/10.3390/ e21010056.spa
dcterms.bibliographicCitationPutro, A.N.S., Mokodenseho, S., Aziz, A.M., 2023. Analysis of information system development in the context of the latest technological era: Challenges and potential for success. West Science Information System and Technology 1, 19–26. doi:https://doi.org/10.58812/wsist. v1i01.168spa
dcterms.bibliographicCitationRistvej, J., Lacinak, M., Ondrejka, R., 2020. On smart city and safe city concepts. Mobile Networks and Applications 25, 836–845. doi: ´ https: //doi.org/10.1007/s11036-020-01524-4.spa
dcterms.bibliographicCitationRuktanonchai, C.W., Lai, S., Utazi, C.E., Cunningham, A.D., Koper, P., Rogers, G.E., Ruktanonchai, N.W., Sadilek, A., Woods, D., Tatem, A.J., et al., 2021. Practical geospatial and sociodemographic predictors of human mobility. Scientific reports 11, 15389. doi:https://doi.org/ 10.1038/s41598-021-94683-7.spa
dcterms.bibliographicCitationScardoni, G., Laudanna, C., 2012. Centralities based analysis of complex networks. New frontiers in graph theory 323. doi:https://doi.org/ 10.5772/35846spa
dcterms.bibliographicCitationShamsuzzoha, A., Nieminen, J., Piya, S., Rutledge, K., 2021. Smart city for sustainable environment: A comparison of participatory strategies from helsinki, singapore and london. Cities 114, 103194. doi:https://doi.org/10.1016/j.cities.2021.103194.spa
dcterms.bibliographicCitationShang, W.L., Chen, Y., Bi, H., Zhang, H., Ma, C., Ochieng, W.Y., 2020. Statistical characteristics and community analysis of urban road networks. Complexity 2020, 1–21. doi:https://doi.org/10.1155/2020/6025821.spa
dcterms.bibliographicCitationSierra Porta, D., Herrera Acevedo, D., 2024. Topological data analysis and network analysis approach for sustainable mobility in cities. URL: https://doi.org/10.17632/gmyt9wrgst.1, doi:10.17632/gmyt9wrgst.1.spa
dcterms.bibliographicCitationTokuda, E.K., Comin, C.H., da F Costa, L., 2022. Impact of the topology of urban streets on mobility optimization. Journal of Statistical Mechanics: Theory and Experiment 2022, 103204. doi:https:/doi.org/10.1088/1742-5468/ac9471.spa
dcterms.bibliographicCitationToli, A.M., Murtagh, N., 2020. The concept of sustainability in smart city definitions. Frontiers in Built Environment 6, 77. doi:https: //doi.org/10.3389/fbuil.2020.00077.spa
dcterms.bibliographicCitationTsavachidis, M., Le Petit, Y., 2022. Re-shaping urban mobility–key to europe´ s green transition. Journal of Urban Mobility 2, 100014. doi:https: //doi.org/10.1016/j.urbmob.2022.100014.spa
dcterms.bibliographicCitationValeri, M., Baggio, R., 2021. Italian tourism intermediaries: A social network analysis exploration. Current Issues in Tourism 24, 1270–1283. doi:https://doi.org/10.1080/13683500.2020.1777950.spa
dcterms.bibliographicCitationVecchio, G., Tiznado-Aitken, I., Hurtubia, R., 2020. Transport and equity in latin america: a critical review of socially oriented accessibility assessments. Transport reviews 40, 354–381. doi:https://doi.org/10.1080/01441647.2020.1711828spa
dcterms.bibliographicCitationVecchio, G., Tiznado-Aitken, I., Mora-Vega, R., 2021. Pandemic-related streets transformations: Accelerating sustainable mobility transitions in latin america. Case Studies on Transport Policy 9, 1825–1835. doi:https://doi.org/10.1016/j.cstp.2021.10.002.spa
dcterms.bibliographicCitationWang, J., 2015. Resilience of self-organised and top-down planned cities—a case study on london and beijing street networks. PloS one 10, e0141736. doi:https://doi.org/10.1371/journal.pone.0141736.spa
dcterms.bibliographicCitationWang, L., Deng, X., Gui, J., Jiang, P., Zeng, F., Wan, S., 2023. A review of urban air mobility-enabled intelligent transportation systems: Mechanisms, applications and challenges. Journal of Systems Architecture , 102902doi:https://doi.org/10.1016/j.sysarc.2023. 102902.spa
dcterms.bibliographicCitationWang, X., You, S., Wang, L., 2017. Classifying road network patterns using multinomial logit model. Journal of Transport Geography 58, 104–112. doi:https://doi.org/10.1016/j.jtrangeo.2016.11.013.spa
dcterms.bibliographicCitationWen, Y., 2023. Rightful resistance: How do digital platforms achieve policy change? Technology in Society 74, 102266. doi:https://doi.org/ 10.1016/j.techsoc.2023.102266.spa
dcterms.bibliographicCitationWimbadi, R.W., Djalante, R., Mori, A., 2021. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990–2020). Sustainable Cities and Society 72, 103023. doi:https://doi.org/10.1016/j.scs.2021.103023.spa
dcterms.bibliographicCitationWu, C.Y., Hu, M.B., Jiang, R., Hao, Q.Y., 2021. Effects of road network structure on the performance of urban traffic systems. Physica A: Statistical Mechanics and its Applications 563, 125361. doi:https://doi.org/10.1016/j.physa.2020.125361.spa
dcterms.bibliographicCitationXie, F., Levinson, D., 2007. Measuring the structure of road networks. Geographical analysis 39, 336–356. doi:https://doi.org/10.1111/j. 1538-4632.2007.00707.xspa
dcterms.bibliographicCitationXu, G., Zhou, Z., Jiao, L., Zhao, R., 2020. Compact urban form and expansion pattern slow down the decline in urban densities: A global perspective. Land Use Policy 94, 104563. doi:https://doi.org/10.1016/j.landusepol.2020.104563.spa
dcterms.bibliographicCitationYadav, K.K., Singh, A.K., 2022. Topology-based protein–protein interaction analysis of oral cancer proteins. Current Science (00113891) 123. doi:https://doi.org/10.18520/cs/v123/i10/1216-1224.spa
dcterms.bibliographicCitationYang, Y., Lu, X., Chen, J., Li, N., 2022. Factor mobility, transportation network and green economic growth of the urban agglomeration. Scientific Reports 12, 20094. doi:https://doi.org/10.1038/s41598-022-24624-5spa
dcterms.bibliographicCitationYu, J., Stettler, M.E., Angeloudis, P., Hu, S., Chen, X.M., 2020. Urban network-wide traffic speed estimation with massive ride-sourcing gps traces. Transportation Research Part C: Emerging Technologies 112, 136–152. doi:https://doi.org/10.1016/j.trc.2020.01.023.spa
dcterms.bibliographicCitationZhang, M., Huang, T., Guo, Z., He, Z., 2022a. Complex-network-based traffic network analysis and dynamics: A comprehensive review. Physica A: Statistical Mechanics and its Applications 607, 128063. doi:https://doi.org/10.1016/j.physa.2022.128063spa
dcterms.bibliographicCitationZhang, T., Duan, X., Li, Y., 2021. Unveiling transit mobility structure towards sustainable cities: An integrated graph embedding approach. Sustainable Cities and Society 72, 103027. doi:https://doi.org/10.1016/j.scs.2021.103027spa
dcterms.bibliographicCitationZhang, Y., Chen, Y., Zhu, W., Wang, W., Zhang, Q., 2022b. The topological structure of urban roads and its relation with human activities at the street-based community level. Frontiers in Earth Science 10, 966907. doi:https://doi.org/10.3389/feart.2022.966907.spa
dcterms.bibliographicCitationZhang, Y., Cheng, L., 2023. The role of transport infrastructure in economic growth: Empirical evidence in the uk. Transport Policy 133, 223–233. doi:https://doi.org/10.1016/j.tranpol.2023.01.017.spa
dcterms.bibliographicCitationZhang, Y., Wang, X., Zeng, P., Chen, X., 2011. Centrality characteristics of road network patterns of traffic analysis zones. Transportation research record 2256, 16–24. doi:https://doi.org/10.3141/2256-03.spa
dcterms.bibliographicCitationZhang, Y., Zheng, X., Helbich, M., Chen, N., Chen, Z., 2022c. City2vec: Urban knowledge discovery based on population mobile network. Sustainable Cities and Society 85, 104000. doi:https://doi.org/10.1016/j.scs.2022.104000.spa
dcterms.bibliographicCitationZhao, S., Zhao, P., Cui, Y., 2017. A network centrality measure framework for analyzing urban traffic flow: A case study of wuhan, china. Physica A: Statistical Mechanics and its Applications 478, 143–157. doi:https://doi.org/10.1016/j.physa.2017.02.069.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.scs.2024.106076
dc.subject.keywordsUrban mobilityspa
dc.subject.keywordsComplex network analysisspa
dc.subject.keywordsSustainable transportationspa
dc.subject.keywordsSustainable urban developmentspa
dc.subject.keywordsUrban planningspa
dc.subject.keywordsTopological data analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.