Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.coverage.spatialColombia
dc.date.accessioned2025-01-13T18:28:15Z
dc.date.available2025-01-13T18:28:15Z
dc.date.issued2025-01-13
dc.date.submitted2025-01-13
dc.identifier.citationSierra-Porta, D. (2025). Characterizing long-term cosmic ray time series with geometric network curvature metrics. Journal of Atmospheric and Solar-Terrestrial Physics, 268, 106418. https://doi.org/10.1016/j.jastp.2025.106418spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13222
dc.description.abstractThis study investigates the relationship between geometry and nonlinear dynamics in time series of cosmic ray counts recorded at neutron monitors at ground stations. Using advanced geometric and topological analysis techniques, we construct complex networks from the time series and calculate curvature measures such as Ollivier-Ricci curvature, Forman-Ricci curvature, and Ricci flow for each series. The analysis reveals significant correlations between these curvature metrics and key parameters such as geomagnetic cutoff rigidity and detector latitude. In particular, Forman-Ricci curvature exhibits a robust negative correlation with cutoff rigidity (Pearson , Spearman , -value ), while Ricci flow also shows a strong and highly significant inverse relationship with cutoff rigidity (Pearson , Spearman , -value ). These results suggest that the geometrical structure of the networks, influenced by geomagnetic conditions, plays a crucial role in the variability, complexity, and fractality of cosmic ray time series. Furthermore, the study underscores the importance of considering network topology and curvature metrics in the analysis of cosmic ray data, offering new perspectives for understanding space weather phenomena and improving predictive models. This integrative approach not only advances our knowledge of cosmic ray dynamics, but also has important implications for mitigating risks associated with space weather conditions on Earth.spa
dc.format.extent11 pag.
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceJournal of Atmospheric and Solar-Terrestrial Physicsspa
dc.titleCharacterizing long-term cosmic ray time series with geometric network curvature metricsspa
dcterms.bibliographicCitationP. K. Grieder, Cosmic rays at Earth, Elsevier, 2001. doi:https://ui.adsabs.harvard.edu/link_gateway/2001cre..book.....G/doi: 10.1016/B978-0-444-50710-5.X5000-3spa
dcterms.bibliographicCitationJ. F. Ziegler, Terrestrial cosmic rays, IBM journal of research and development 40 (1996) 19–39. doi:https://doi.org/10.1147/rd.401.0019.spa
dcterms.bibliographicCitationV. Tatischeff, J. C. Raymond, J. Duprat, S. Gabici, S. Recchia, The origin of galactic cosmic rays as revealed by their composition, Monthly Notices of the Royal Astronomical Society 508 (2021) 1321–1345. doi:https://doi.org/10.1093/mnras/stab2533.spa
dcterms.bibliographicCitationL. I. Dorman, Space weather and cosmic ray effects, in: Climate change, Elsevier, 2021, pp. 711–768. doi:https://doi.org/10.1016/B978-0-12-821575-3.00033-5.spa
dcterms.bibliographicCitationM. Guhathakurta, Everyday space weather, Journal of Space Weather and Space Climate 11 (2021) 36. doi:https://doi.org/10.1051/swsc/2021019.spa
dcterms.bibliographicCitationL. C. Simonsen, T. C. Slaba, P. Guida, A. Rusek, Nasa’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research, PLoS biology 18 (2020) e3000669. doi:https://doi.org/10.1371/journal.pbio.3000669.spa
dcterms.bibliographicCitationS. K. Hoe¨ ffgen, S. Metzger, M. Steffens, Investigating the effects of cosmic rays on space electronics, Frontiers in Physics 8 (2020) 318. doi:https://doi.org/10.3389/fphy.2020.00318.spa
dcterms.bibliographicCitationA. B. Sharma, O. Lamba, A review: source and effect of mobile communication radiation on human health, Advances in Wireless and Mobile Communications 10 (2017) 423–435. doi: https://www.ripublication.com/awmc17/awmcv10n3_03.pdf.spa
dcterms.bibliographicCitationA. Singh, D. Siingh, R. Singh, Impact of galactic cosmic rays on earth’s atmosphere and human health, Atmospheric Environment 45 (2011) 3806–3818. doi: https://doi.org/10.1016/j.atmosenv.2011.04.027.spa
dcterms.bibliographicCitationM. Lim, Cosmic rays: are air crew at risk?, Occupational and environmental medicine 59 (2002) 428–432. doi:https://oem.bmj.com/content/oemed/59/7/428.full.pdf.spa
dcterms.bibliographicCitationF. A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings, The lancetoncology 7 (2006) 431–435. doi:https://doi.org/10.1016/S1470-2045(06)70695-7.spa
dcterms.bibliographicCitationD. Sierra-Porta, On the fractal properties of cosmic rays and sun dynamics cross-correlations, Astrophysics and Space Science 367 (2022) 116. doi:https://doi.org/10.1007/s10509-022-04151-5.spa
dcterms.bibliographicCitationW.-X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Physical Review E 77 (2008) 066211. doi:https://doi.org/10.1103/PhysRevE.77.066211.spa
dcterms.bibliographicCitationK. Kudela, D. Venkatesan, Fractal structure of cosmic ray intensity variations, Nuclear Physics B-Proceedings Supplements 39 (1995) 127–135. doi:https://doi.org/10.1016/0920-5632(95)00015-2.spa
dcterms.bibliographicCitationS. Gopinath, P. Prince, Multifractal characteristics of magnetospheric dynamics and their relationship with sunspot cycle, Advances in Space Research 59 (2017) 2265–2278. doi:https://doi.org/10.1016/j.asr.2017.02.011.spa
dcterms.bibliographicCitationK. Herbst, A. Kopp, B. Heber, Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles, in: An551 nales Geophysicae, volume 31, Copernicus Publications Gottingen, Germany, 2013, pp. 1637–1643. doi: ¨ https://doi.org/10.5194/angeo-31-1637-2013.spa
dcterms.bibliographicCitationD. Smart, M. Shea, A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft, Advances in Space Research 36 (2005) 2012–2020. doi:https://doi.org/10.1016/j.asr.2004.09.015.spa
dcterms.bibliographicCitationO. Danilova, N. Ptitsyna, M. Tyasto, V. Sdobnov, The relationship of magnetospheric parameters with cosmic-ray cutoff rigidities depending on latitude, Cosmic Research 61 (2023) 18–26. doi:https://doi.org/10.1134/S0010952523010021.spa
dcterms.bibliographicCitationE. S. Comedi, A. G. Elias, B. S. Zossi, Spatial features of geomagnetic cutoff rigidity secular variation using analytical approaches, Journal of Atmospheric and Solar-Terrestrial Physics 211 (2020) 105475. doi:https://doi.org/10.1016/j.jastp.2020.105475.spa
dcterms.bibliographicCitationM. Gerontidou, N. Katzourakis, H. Mavromichalaki, V. Yanke, E. Eroshenko, World grid of cosmic ray vertical cut-off rigidity for the last decade, Advances in Space Research 67 (2021) 2231–2240. doi:https://doi.org/10.1016/j.asr.2021.01.011.spa
dcterms.bibliographicCitationD. Sierra-Porta, A.-R. Dom´ınguez-Monterroza, Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis, Physica A: Statistical Mechanics and its Applications 607 (2022) 128159. doi:https://doi.org/10.1016/j.physa.2022.128159.spa
dcterms.bibliographicCitationJ. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A: Statistical Mechanics and its Applications 316 (2002) 87–114. doi:https://doi.org/10.1016/S0378-4371(02)01383-3.spa
dcterms.bibliographicCitationA. Giri, B. Adhikari, S. Dahal, K. Paula, M. Bolzan, Multi-fractal analysis of cosmic rays over mid-and high-latitude stations during severe geomagnetic storms, Solar Physics 299 (2024) 148. doi:https://doi.org/10.1007/s11207-024-02393-w.spa
dcterms.bibliographicCitationZ.-G. Yu, V. Anh, R. Eastes, Multifractal analysis of geomagnetic storm and solar flare indices and their class dependence, Journal of Geophysical Research: Space Physics 114 (2009). doi:https://doi.org/10.1029/2008JA013854.spa
dcterms.bibliographicCitationD. Sierra-Porta, Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques, Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (2024). doi:https://doi.org/10.1063/5.0167156.spa
dcterms.bibliographicCitationM. Stephen, C. Gu, H. Yang, Visibility graph based time series analysis, PloS one 10 (2015) e0143015. doi:https://doi.org/10.1371/journal.pone.0143015spa
dcterms.bibliographicCitationL. Lacasa, R. Toral, Description of stochastic and chaotic series using visibility graphs, Physical Review E 82 (2010) 036120. doi:https:575 //doi.org/10.1103/PhysRevE.82.036120.spa
dcterms.bibliographicCitationD. Sierra-Porta, A multifractal approach to understanding forbush decrease events: Correlations with geomagnetic storms and space weather phenomena, Chaos, Solitons & Fractals 185 (2024) 115089. doi:https://doi.org/10.1016/j.chaos.2024.115089.spa
dcterms.bibliographicCitationM. Boguna, I. Bonamassa, M. De Domenico, S. Havlin, D. Krioukov, M. A. Serrano, Network geometry, Nature Reviews Physics 3 (2021) 114–135. doi:https://doi.org/10.1038/s42254-020-00264-4.spa
dcterms.bibliographicCitationD. Mulder, G. Bianconi, Network geometry and complexity, Journal of Statistical Physics 173 (2018) 783–805. doi:https://doi.org/10.1007/s10955-018-2115-9.spa
dcterms.bibliographicCitationG. Salanti, F. K. Kavvoura, J. P. Ioannidis, Exploring the geometry of treatment networks, Annals of internal medicine 148 (2008) 544–553. doi:https://doi.org/10.7326/0003-4819-148-7-200804010-00011.spa
dcterms.bibliographicCitationA. Samal, H. K. Pharasi, S. J. Ramaia, H. Kannan, E. Saucan, J. Jost, A. Chakraborti, Network geometry and market instability, Royal Society open science 8 (2021) 201734. doi:https://doi.org/10.1098/rsos.201734.spa
dcterms.bibliographicCitationP. T.-W. Yen, K. Xia, S. A. Cheong, Understanding changes in the topology and geometry of financial market correlations during a market crash, Entropy 23 (2021) 1211. doi:https://doi.org/10.3390/e23091211.spa
dcterms.bibliographicCitationM. Haenggi, Stochastic geometry for wireless networks, Cambridge University Press, 2012. URL: https://dl.acm.org/doi/abs/10.5555/2480878.spa
dcterms.bibliographicCitationD. B. de Souza, J. T. Da Cunha, E. F. dos Santos, J. B. Correia, H. P. da Silva, J. L. de Lima Filho, J. Albuquerque, F. A. Santos, Using discrete ricci curvatures to infer covid-19 epidemic network fragility and systemic risk, Journal of Statistical Mechanics: Theory and Experiment 2021 (2021) 053501. doi:https://doi.org/10.1088/1742-5468/abed4e.spa
dcterms.bibliographicCitationR. Albert, B. DasGupta, N. Mobasheri, Topological implications of negative curvature for biological and social networks, Physical Review E 89 (2014) 032811. doi:https://doi.org/10.1103/PhysRevE.89.032811.spa
dcterms.bibliographicCitationG. Marti, F. Nielsen, M. Binkowski, P. Donnat, A review of two decades of correlations, hierarchies, networks and clustering in financial markets, Progress in information geometry: Theory and applications (2021) 245–274. doi:https://doi.org/10.1007/978-3-030-65459-7_10.spa
dcterms.bibliographicCitationO. M. Granados, A. Vargas, The geometry of suspicious money laundering activities in financial networks, EPJ Data Science 11 (2022) 6. doi:https://doi.org/10.1140/epjds/s13688-022-00318-w.spa
dcterms.bibliographicCitationR. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of chaotic dynamics—a complex network perspective, The European Physical Journal B 84 (2011) 653– doi:https://doi.org/10.1140/epjb/e2011-10899-1.spa
dcterms.bibliographicCitationA. Baptista, B. D. MacArthur, C. R. Banerji, Charting cellular differentiation trajectories with ricci flow, bioRxiv (2023) 2023–07. doi:https: //doi.org/10.1101/2023.07.20.549833.spa
dcterms.bibliographicCitationW.-L. Jin, Stability and bifurcation in network traffic flow: A poincare map approach, Transportation Research Part B: Methodological 57 (2013) ´191–208. doi:https://doi.org/10.1016/j.trb.2013.08.013.spa
dcterms.bibliographicCitationM. Golubitsky, I. Stewart, Recent advances in symmetric and network dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science 25 (2015). doi:https://doi.org/10.1063/1.4918595.spa
dcterms.bibliographicCitationR. A. El-Nabulsi, Fractal diffusion from a geometric ricci flow, Journal of Elliptic and Parabolic Equations 8 (2022) 837–852. doi:https://doi.org/10.1007/s41808-022-00169-6.spa
dcterms.bibliographicCitationS. Gaidash, A. Belov, M. Abunina, A. Abunin, Space weather forecasting at izmiran, Geomagnetism and Aeronomy 57 (2017) 869–876. doi:https://doi.org/10.1134/S0016793217070088.spa
dcterms.bibliographicCitationH. Mavromichalaki, A. Papaioannou, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, C. Plainaki, M. Papailiou, G. Mariatos, N. Team, Establishing and using the real-time neutron monitor database (nmdb), in: 9th International Conference of the Hellenic Astronomical Society, volume 424, 2010, p. 75. doi:https://adsabs.harvard.edu/full/2010ASPC..424...75M.spa
dcterms.bibliographicCitationH. Mavromichalaki, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, M. Papailiou, E. Eroshenko, A. Belov, V. Yanke, et al., Applications and usage of the real-time neutron monitor database, Advances in Space Research 47 (2011) 2210–2222. doi:https://doi.org/10.1016/j.asr.2010.02.019.spa
dcterms.bibliographicCitationM. Weber, E. Saucan, J. Jost, Characterizing complex networks with forman-ricci curvature and associated geometric flows, Journal of Complex Networks 5 (2017) 527–550. doi:https://doi.org/10.1093/comnet/cnw030.spa
dcterms.bibliographicCitationA. Tannenbaum, C. Sander, L. Zhu, R. Sandhu, I. Kolesov, E. Reznik, Y. Senbabaoglu, T. Georgiou, Graph curvature and the robustness of cancer networks, arXiv preprint arXiv:1502.04512 (2015). doi:https://doi.org/10.48550/arXiv.1502.04512.spa
dcterms.bibliographicCitationM. Weber, J. Stelzer, E. Saucan, A. Naitsat, G. Lohmann, J. Jost, Curvature-based methods for brain network analysis, arXiv preprint 622 arXiv:1707.00180 (2017). doi:https://doi.org/10.48550/arXiv.1707.00180.spa
dcterms.bibliographicCitationR. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu, A. Tannenbaum, Graph curvature for differentiating cancer networks, Scientific reports 5 (2015) 12323. doi:https://doi.org/10.1038/srep12323.spa
dcterms.bibliographicCitationW. Leal, G. Restrepo, P. F. Stadler, J. Jost, Forman–ricci curvature for hypergraphs, Advances in Complex Systems 24 (2021) 2150003. doi:https://doi.org/10.1142/S021952592150003X.spa
dcterms.bibliographicCitationR. S. Sandhu, T. T. Georgiou, A. R. Tannenbaum, Ricci curvature: An economic indicator for market fragility and systemic risk, Science advances 2 (2016) e1501495. doi:https://doi.org/10.1126/sciadv.1501495.spa
dcterms.bibliographicCitationJ. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, M. M. Bronstein, Understanding over-squashing and bottlenecks on graphs via curvature, arXiv preprint arXiv:2111.14522 (2021). doi:https://doi.org/10.48550/arXiv.2111.14522.spa
dcterms.bibliographicCitationK. Nguyen, N. M. Hieu, V. D. Nguyen, N. Ho, S. Osher, T. M. Nguyen, Revisiting over-smoothing and over-squashing using ollivier-ricci curvature, in: International Conference on Machine Learning, PMLR, 2023, pp. 25956–25979. doi:https://doi.org/10.48550/arXiv.2211.15779.spa
dcterms.bibliographicCitationM. Weber, Neighborhood growth determines geometric priors for relational representation learning, in: International Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 266–276. doi:https://doi.org/10.48550/arXiv.1910.05565.spa
dcterms.bibliographicCitationY. Ollivier, Ricci curvature of markov chains on metric spaces, Journal of Functional Analysis 256 (2009) 810–864. doi:https://doi.org/10.1016/j.jfa.2008.11.001.spa
dcterms.bibliographicCitationY. Ollivier, Ricci curvature of metric spaces, Comptes Rendus Mathematique 345 (2007) 643–646. doi:https://doi.org/10.1016/j.crma.2007.10.041.spa
dcterms.bibliographicCitationL. N. Vaserstein, Markov processes over denumerable products of spaces, describing large systems of automata, Problemy Peredachi Informatsii 5 (1969) 64–72. doi:https://www.mathnet.ru/links/b5f77cc07d259e4f1788e16d6800dd72/ppi1811.pdf.spa
dcterms.bibliographicCitationE. Anderes, S. Borgwardt, J. Miller, Discrete wasserstein barycenters: Optimal transport for discrete data, Mathematical Methods of Operations Research 84 (2016) 389–409. doi:https://doi.org/10.1007/s00186-016-0549-x.spa
dcterms.bibliographicCitationV. M. Panaretos, Y. Zemel, Statistical aspects of wasserstein distances, Annual review of statistics and its application 6 (2019) 405–431. doi:https: //doi.org/10.1146/annurev-statistics-030718-104938.spa
dcterms.bibliographicCitationC.-C. Ni, Y.-Y. Lin, F. Luo, J. Gao, Community detection on networks with ricci flow, Scientific reports 9 (2019) 9984. doi:https://doi.org/10.1038/s41598-019-46380-9.spa
dcterms.bibliographicCitationE. Angriman, A. van der Grinten, M. Hamann, H. Meyerhenke, M. Penschuck, Algorithms for large-scale network analysis and the networkit toolkit, in: Algorithms for Big Data: DFG Priority Program 1736, Springer Nature Switzerland Cham, 2023, pp. 3–20. doi:https://doi.org/10.1007/978-3-031-21534-6.spa
dcterms.bibliographicCitationC. L. Staudt, A. Sazonovs, H. Meyerhenke, Networkit: A tool suite for large-scale complex network analysis, Network Science 4 (2016) 508–530. doi:https://doi.org/10.1017/nws.2016.20.spa
dcterms.bibliographicCitationF. Kuhn, P. Schneider, Computing shortest paths and diameter in the hybrid network model, in: Proceedings of the 39th Symposium on Principles of Distributed Computing, 2020, pp. 109–118. doi:https://doi.org/10.1145/3382734.3405719.spa
dcterms.bibliographicCitationS. Vaid, R. Salih, R. Gayathri, J. J. Nair, All pair shortest path using distributed architectures, in: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 2017, pp. 2000–204. doi:https://doi.org/10.1109/ICACCI.2017.8126138.spa
dcterms.bibliographicCitationI. Rahayuda, N. Santiari, Dijkstra and bidirectional dijkstra on determining evacuation routes, in: Journal of Physics: Conference Series, volume 1803, IOP Publishing, 2021, p. 012018. doi:https://doi.org/10.1088/1742-6596/1803/1/012018.spa
dcterms.bibliographicCitationG. Vaira, O. Kurasova, Parallel bidirectional dijkstra’s shortest path algorithm, Databases and Information Systems VI, Frontiers in Artificial Intelligence and Applications 224 (2011) 422–435.spa
dcterms.bibliographicCitationR. Sreejith, K. Mohanraj, J. Jost, E. Saucan, A. Samal, Forman curvature for complex networks, Journal of Statistical Mechanics: Theory and Experiment 2016 (2016) 063206. doi:https://doi.org/10.1088/1742-5468/2016/06/063206.spa
dcterms.bibliographicCitationForman, Bochner’s method for cell complexes and combinatorial ricci curvature, Discrete & Computational Geometry 29 (2003) 323–374.doi:https://doi.org/10.1007/s00454-002-0743-x.spa
dcterms.bibliographicCitationC.-C. Ni, Y.-Y. Lin, J. Gao, X. Gu, Network alignment by discrete ollivier-ricci flow, in: International symposium on graph drawing and network visualization, Springer, 2018, pp. 447–462. doi:https://doi.org/10.1007/978-3-030-04414-5_32.spa
dcterms.bibliographicCitationR. S. Hamilton, Three-manifolds with positive ricci curvature, Journal of Differential geometry 17 (1982) 255–306. doi:https:// projecteuclid.org/journalArticle/Download?urlId=10.4310\%2Fjdg\%2F1214436922.spa
dcterms.bibliographicCitationM. Girvan, M. E. Newman, Community structure in social and biological networks, Proceedings of the national academy of sciences 99 (2002) 7821–7826. doi:https://doi.org/10.1073/pnas.122653799.spa
dcterms.bibliographicCitationJ. Takalo, Extracting hale cycle related components from cosmic-ray data using principal component analysis, Solar Physics 297 (2022) 113. doi:https://doi.org/10.1007/s11207-022-02048-8.spa
dcterms.bibliographicCitationH. Koeksal, N. Demir, A. Kilcik, Analysis of the cosmic ray effects on sentinel-1 sar satellite data, Aerospace 8 (2021) 62. doi:https://doi.org/10.3390/aerospace8030062.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.jastp.2025.106418
dc.subject.keywordsGeomagnetic rigidity cutoffspa
dc.subject.keywordsCosmic raysspa
dc.subject.keywordsSpace weatherspa
dc.subject.keywordsTopological data analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.