Mostrar el registro sencillo del ítem
Characterizing long-term cosmic ray time series with geometric network curvature metrics
dc.contributor.author | Sierra Porta, David | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2025-01-13T18:28:15Z | |
dc.date.available | 2025-01-13T18:28:15Z | |
dc.date.issued | 2025-01-13 | |
dc.date.submitted | 2025-01-13 | |
dc.identifier.citation | Sierra-Porta, D. (2025). Characterizing long-term cosmic ray time series with geometric network curvature metrics. Journal of Atmospheric and Solar-Terrestrial Physics, 268, 106418. https://doi.org/10.1016/j.jastp.2025.106418 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/13222 | |
dc.description.abstract | This study investigates the relationship between geometry and nonlinear dynamics in time series of cosmic ray counts recorded at neutron monitors at ground stations. Using advanced geometric and topological analysis techniques, we construct complex networks from the time series and calculate curvature measures such as Ollivier-Ricci curvature, Forman-Ricci curvature, and Ricci flow for each series. The analysis reveals significant correlations between these curvature metrics and key parameters such as geomagnetic cutoff rigidity and detector latitude. In particular, Forman-Ricci curvature exhibits a robust negative correlation with cutoff rigidity (Pearson , Spearman , -value ), while Ricci flow also shows a strong and highly significant inverse relationship with cutoff rigidity (Pearson , Spearman , -value ). These results suggest that the geometrical structure of the networks, influenced by geomagnetic conditions, plays a crucial role in the variability, complexity, and fractality of cosmic ray time series. Furthermore, the study underscores the importance of considering network topology and curvature metrics in the analysis of cosmic ray data, offering new perspectives for understanding space weather phenomena and improving predictive models. This integrative approach not only advances our knowledge of cosmic ray dynamics, but also has important implications for mitigating risks associated with space weather conditions on Earth. | spa |
dc.format.extent | 11 pag. | |
dc.format.medium | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Journal of Atmospheric and Solar-Terrestrial Physics | spa |
dc.title | Characterizing long-term cosmic ray time series with geometric network curvature metrics | spa |
dcterms.bibliographicCitation | P. K. Grieder, Cosmic rays at Earth, Elsevier, 2001. doi:https://ui.adsabs.harvard.edu/link_gateway/2001cre..book.....G/doi: 10.1016/B978-0-444-50710-5.X5000-3 | spa |
dcterms.bibliographicCitation | J. F. Ziegler, Terrestrial cosmic rays, IBM journal of research and development 40 (1996) 19–39. doi:https://doi.org/10.1147/rd.401.0019. | spa |
dcterms.bibliographicCitation | V. Tatischeff, J. C. Raymond, J. Duprat, S. Gabici, S. Recchia, The origin of galactic cosmic rays as revealed by their composition, Monthly Notices of the Royal Astronomical Society 508 (2021) 1321–1345. doi:https://doi.org/10.1093/mnras/stab2533. | spa |
dcterms.bibliographicCitation | L. I. Dorman, Space weather and cosmic ray effects, in: Climate change, Elsevier, 2021, pp. 711–768. doi:https://doi.org/10.1016/B978-0-12-821575-3.00033-5. | spa |
dcterms.bibliographicCitation | M. Guhathakurta, Everyday space weather, Journal of Space Weather and Space Climate 11 (2021) 36. doi:https://doi.org/10.1051/swsc/2021019. | spa |
dcterms.bibliographicCitation | L. C. Simonsen, T. C. Slaba, P. Guida, A. Rusek, Nasa’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research, PLoS biology 18 (2020) e3000669. doi:https://doi.org/10.1371/journal.pbio.3000669. | spa |
dcterms.bibliographicCitation | S. K. Hoe¨ ffgen, S. Metzger, M. Steffens, Investigating the effects of cosmic rays on space electronics, Frontiers in Physics 8 (2020) 318. doi:https://doi.org/10.3389/fphy.2020.00318. | spa |
dcterms.bibliographicCitation | A. B. Sharma, O. Lamba, A review: source and effect of mobile communication radiation on human health, Advances in Wireless and Mobile Communications 10 (2017) 423–435. doi: https://www.ripublication.com/awmc17/awmcv10n3_03.pdf. | spa |
dcterms.bibliographicCitation | A. Singh, D. Siingh, R. Singh, Impact of galactic cosmic rays on earth’s atmosphere and human health, Atmospheric Environment 45 (2011) 3806–3818. doi: https://doi.org/10.1016/j.atmosenv.2011.04.027. | spa |
dcterms.bibliographicCitation | M. Lim, Cosmic rays: are air crew at risk?, Occupational and environmental medicine 59 (2002) 428–432. doi:https://oem.bmj.com/content/oemed/59/7/428.full.pdf. | spa |
dcterms.bibliographicCitation | F. A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings, The lancetoncology 7 (2006) 431–435. doi:https://doi.org/10.1016/S1470-2045(06)70695-7. | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, On the fractal properties of cosmic rays and sun dynamics cross-correlations, Astrophysics and Space Science 367 (2022) 116. doi:https://doi.org/10.1007/s10509-022-04151-5. | spa |
dcterms.bibliographicCitation | W.-X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Physical Review E 77 (2008) 066211. doi:https://doi.org/10.1103/PhysRevE.77.066211. | spa |
dcterms.bibliographicCitation | K. Kudela, D. Venkatesan, Fractal structure of cosmic ray intensity variations, Nuclear Physics B-Proceedings Supplements 39 (1995) 127–135. doi:https://doi.org/10.1016/0920-5632(95)00015-2. | spa |
dcterms.bibliographicCitation | S. Gopinath, P. Prince, Multifractal characteristics of magnetospheric dynamics and their relationship with sunspot cycle, Advances in Space Research 59 (2017) 2265–2278. doi:https://doi.org/10.1016/j.asr.2017.02.011. | spa |
dcterms.bibliographicCitation | K. Herbst, A. Kopp, B. Heber, Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles, in: An551 nales Geophysicae, volume 31, Copernicus Publications Gottingen, Germany, 2013, pp. 1637–1643. doi: ¨ https://doi.org/10.5194/angeo-31-1637-2013. | spa |
dcterms.bibliographicCitation | D. Smart, M. Shea, A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft, Advances in Space Research 36 (2005) 2012–2020. doi:https://doi.org/10.1016/j.asr.2004.09.015. | spa |
dcterms.bibliographicCitation | O. Danilova, N. Ptitsyna, M. Tyasto, V. Sdobnov, The relationship of magnetospheric parameters with cosmic-ray cutoff rigidities depending on latitude, Cosmic Research 61 (2023) 18–26. doi:https://doi.org/10.1134/S0010952523010021. | spa |
dcterms.bibliographicCitation | E. S. Comedi, A. G. Elias, B. S. Zossi, Spatial features of geomagnetic cutoff rigidity secular variation using analytical approaches, Journal of Atmospheric and Solar-Terrestrial Physics 211 (2020) 105475. doi:https://doi.org/10.1016/j.jastp.2020.105475. | spa |
dcterms.bibliographicCitation | M. Gerontidou, N. Katzourakis, H. Mavromichalaki, V. Yanke, E. Eroshenko, World grid of cosmic ray vertical cut-off rigidity for the last decade, Advances in Space Research 67 (2021) 2231–2240. doi:https://doi.org/10.1016/j.asr.2021.01.011. | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, A.-R. Dom´ınguez-Monterroza, Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis, Physica A: Statistical Mechanics and its Applications 607 (2022) 128159. doi:https://doi.org/10.1016/j.physa.2022.128159. | spa |
dcterms.bibliographicCitation | J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A: Statistical Mechanics and its Applications 316 (2002) 87–114. doi:https://doi.org/10.1016/S0378-4371(02)01383-3. | spa |
dcterms.bibliographicCitation | A. Giri, B. Adhikari, S. Dahal, K. Paula, M. Bolzan, Multi-fractal analysis of cosmic rays over mid-and high-latitude stations during severe geomagnetic storms, Solar Physics 299 (2024) 148. doi:https://doi.org/10.1007/s11207-024-02393-w. | spa |
dcterms.bibliographicCitation | Z.-G. Yu, V. Anh, R. Eastes, Multifractal analysis of geomagnetic storm and solar flare indices and their class dependence, Journal of Geophysical Research: Space Physics 114 (2009). doi:https://doi.org/10.1029/2008JA013854. | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques, Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (2024). doi:https://doi.org/10.1063/5.0167156. | spa |
dcterms.bibliographicCitation | M. Stephen, C. Gu, H. Yang, Visibility graph based time series analysis, PloS one 10 (2015) e0143015. doi:https://doi.org/10.1371/journal.pone.0143015 | spa |
dcterms.bibliographicCitation | L. Lacasa, R. Toral, Description of stochastic and chaotic series using visibility graphs, Physical Review E 82 (2010) 036120. doi:https:575 //doi.org/10.1103/PhysRevE.82.036120. | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, A multifractal approach to understanding forbush decrease events: Correlations with geomagnetic storms and space weather phenomena, Chaos, Solitons & Fractals 185 (2024) 115089. doi:https://doi.org/10.1016/j.chaos.2024.115089. | spa |
dcterms.bibliographicCitation | M. Boguna, I. Bonamassa, M. De Domenico, S. Havlin, D. Krioukov, M. A. Serrano, Network geometry, Nature Reviews Physics 3 (2021) 114–135. doi:https://doi.org/10.1038/s42254-020-00264-4. | spa |
dcterms.bibliographicCitation | D. Mulder, G. Bianconi, Network geometry and complexity, Journal of Statistical Physics 173 (2018) 783–805. doi:https://doi.org/10.1007/s10955-018-2115-9. | spa |
dcterms.bibliographicCitation | G. Salanti, F. K. Kavvoura, J. P. Ioannidis, Exploring the geometry of treatment networks, Annals of internal medicine 148 (2008) 544–553. doi:https://doi.org/10.7326/0003-4819-148-7-200804010-00011. | spa |
dcterms.bibliographicCitation | A. Samal, H. K. Pharasi, S. J. Ramaia, H. Kannan, E. Saucan, J. Jost, A. Chakraborti, Network geometry and market instability, Royal Society open science 8 (2021) 201734. doi:https://doi.org/10.1098/rsos.201734. | spa |
dcterms.bibliographicCitation | P. T.-W. Yen, K. Xia, S. A. Cheong, Understanding changes in the topology and geometry of financial market correlations during a market crash, Entropy 23 (2021) 1211. doi:https://doi.org/10.3390/e23091211. | spa |
dcterms.bibliographicCitation | M. Haenggi, Stochastic geometry for wireless networks, Cambridge University Press, 2012. URL: https://dl.acm.org/doi/abs/10.5555/2480878. | spa |
dcterms.bibliographicCitation | D. B. de Souza, J. T. Da Cunha, E. F. dos Santos, J. B. Correia, H. P. da Silva, J. L. de Lima Filho, J. Albuquerque, F. A. Santos, Using discrete ricci curvatures to infer covid-19 epidemic network fragility and systemic risk, Journal of Statistical Mechanics: Theory and Experiment 2021 (2021) 053501. doi:https://doi.org/10.1088/1742-5468/abed4e. | spa |
dcterms.bibliographicCitation | R. Albert, B. DasGupta, N. Mobasheri, Topological implications of negative curvature for biological and social networks, Physical Review E 89 (2014) 032811. doi:https://doi.org/10.1103/PhysRevE.89.032811. | spa |
dcterms.bibliographicCitation | G. Marti, F. Nielsen, M. Binkowski, P. Donnat, A review of two decades of correlations, hierarchies, networks and clustering in financial markets, Progress in information geometry: Theory and applications (2021) 245–274. doi:https://doi.org/10.1007/978-3-030-65459-7_10. | spa |
dcterms.bibliographicCitation | O. M. Granados, A. Vargas, The geometry of suspicious money laundering activities in financial networks, EPJ Data Science 11 (2022) 6. doi:https://doi.org/10.1140/epjds/s13688-022-00318-w. | spa |
dcterms.bibliographicCitation | R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of chaotic dynamics—a complex network perspective, The European Physical Journal B 84 (2011) 653– doi:https://doi.org/10.1140/epjb/e2011-10899-1. | spa |
dcterms.bibliographicCitation | A. Baptista, B. D. MacArthur, C. R. Banerji, Charting cellular differentiation trajectories with ricci flow, bioRxiv (2023) 2023–07. doi:https: //doi.org/10.1101/2023.07.20.549833. | spa |
dcterms.bibliographicCitation | W.-L. Jin, Stability and bifurcation in network traffic flow: A poincare map approach, Transportation Research Part B: Methodological 57 (2013) ´191–208. doi:https://doi.org/10.1016/j.trb.2013.08.013. | spa |
dcterms.bibliographicCitation | M. Golubitsky, I. Stewart, Recent advances in symmetric and network dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science 25 (2015). doi:https://doi.org/10.1063/1.4918595. | spa |
dcterms.bibliographicCitation | R. A. El-Nabulsi, Fractal diffusion from a geometric ricci flow, Journal of Elliptic and Parabolic Equations 8 (2022) 837–852. doi:https://doi.org/10.1007/s41808-022-00169-6. | spa |
dcterms.bibliographicCitation | S. Gaidash, A. Belov, M. Abunina, A. Abunin, Space weather forecasting at izmiran, Geomagnetism and Aeronomy 57 (2017) 869–876. doi:https://doi.org/10.1134/S0016793217070088. | spa |
dcterms.bibliographicCitation | H. Mavromichalaki, A. Papaioannou, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, C. Plainaki, M. Papailiou, G. Mariatos, N. Team, Establishing and using the real-time neutron monitor database (nmdb), in: 9th International Conference of the Hellenic Astronomical Society, volume 424, 2010, p. 75. doi:https://adsabs.harvard.edu/full/2010ASPC..424...75M. | spa |
dcterms.bibliographicCitation | H. Mavromichalaki, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, M. Papailiou, E. Eroshenko, A. Belov, V. Yanke, et al., Applications and usage of the real-time neutron monitor database, Advances in Space Research 47 (2011) 2210–2222. doi:https://doi.org/10.1016/j.asr.2010.02.019. | spa |
dcterms.bibliographicCitation | M. Weber, E. Saucan, J. Jost, Characterizing complex networks with forman-ricci curvature and associated geometric flows, Journal of Complex Networks 5 (2017) 527–550. doi:https://doi.org/10.1093/comnet/cnw030. | spa |
dcterms.bibliographicCitation | A. Tannenbaum, C. Sander, L. Zhu, R. Sandhu, I. Kolesov, E. Reznik, Y. Senbabaoglu, T. Georgiou, Graph curvature and the robustness of cancer networks, arXiv preprint arXiv:1502.04512 (2015). doi:https://doi.org/10.48550/arXiv.1502.04512. | spa |
dcterms.bibliographicCitation | M. Weber, J. Stelzer, E. Saucan, A. Naitsat, G. Lohmann, J. Jost, Curvature-based methods for brain network analysis, arXiv preprint 622 arXiv:1707.00180 (2017). doi:https://doi.org/10.48550/arXiv.1707.00180. | spa |
dcterms.bibliographicCitation | R. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu, A. Tannenbaum, Graph curvature for differentiating cancer networks, Scientific reports 5 (2015) 12323. doi:https://doi.org/10.1038/srep12323. | spa |
dcterms.bibliographicCitation | W. Leal, G. Restrepo, P. F. Stadler, J. Jost, Forman–ricci curvature for hypergraphs, Advances in Complex Systems 24 (2021) 2150003. doi:https://doi.org/10.1142/S021952592150003X. | spa |
dcterms.bibliographicCitation | R. S. Sandhu, T. T. Georgiou, A. R. Tannenbaum, Ricci curvature: An economic indicator for market fragility and systemic risk, Science advances 2 (2016) e1501495. doi:https://doi.org/10.1126/sciadv.1501495. | spa |
dcterms.bibliographicCitation | J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, M. M. Bronstein, Understanding over-squashing and bottlenecks on graphs via curvature, arXiv preprint arXiv:2111.14522 (2021). doi:https://doi.org/10.48550/arXiv.2111.14522. | spa |
dcterms.bibliographicCitation | K. Nguyen, N. M. Hieu, V. D. Nguyen, N. Ho, S. Osher, T. M. Nguyen, Revisiting over-smoothing and over-squashing using ollivier-ricci curvature, in: International Conference on Machine Learning, PMLR, 2023, pp. 25956–25979. doi:https://doi.org/10.48550/arXiv.2211.15779. | spa |
dcterms.bibliographicCitation | M. Weber, Neighborhood growth determines geometric priors for relational representation learning, in: International Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 266–276. doi:https://doi.org/10.48550/arXiv.1910.05565. | spa |
dcterms.bibliographicCitation | Y. Ollivier, Ricci curvature of markov chains on metric spaces, Journal of Functional Analysis 256 (2009) 810–864. doi:https://doi.org/10.1016/j.jfa.2008.11.001. | spa |
dcterms.bibliographicCitation | Y. Ollivier, Ricci curvature of metric spaces, Comptes Rendus Mathematique 345 (2007) 643–646. doi:https://doi.org/10.1016/j.crma.2007.10.041. | spa |
dcterms.bibliographicCitation | L. N. Vaserstein, Markov processes over denumerable products of spaces, describing large systems of automata, Problemy Peredachi Informatsii 5 (1969) 64–72. doi:https://www.mathnet.ru/links/b5f77cc07d259e4f1788e16d6800dd72/ppi1811.pdf. | spa |
dcterms.bibliographicCitation | E. Anderes, S. Borgwardt, J. Miller, Discrete wasserstein barycenters: Optimal transport for discrete data, Mathematical Methods of Operations Research 84 (2016) 389–409. doi:https://doi.org/10.1007/s00186-016-0549-x. | spa |
dcterms.bibliographicCitation | V. M. Panaretos, Y. Zemel, Statistical aspects of wasserstein distances, Annual review of statistics and its application 6 (2019) 405–431. doi:https: //doi.org/10.1146/annurev-statistics-030718-104938. | spa |
dcterms.bibliographicCitation | C.-C. Ni, Y.-Y. Lin, F. Luo, J. Gao, Community detection on networks with ricci flow, Scientific reports 9 (2019) 9984. doi:https://doi.org/10.1038/s41598-019-46380-9. | spa |
dcterms.bibliographicCitation | E. Angriman, A. van der Grinten, M. Hamann, H. Meyerhenke, M. Penschuck, Algorithms for large-scale network analysis and the networkit toolkit, in: Algorithms for Big Data: DFG Priority Program 1736, Springer Nature Switzerland Cham, 2023, pp. 3–20. doi:https://doi.org/10.1007/978-3-031-21534-6. | spa |
dcterms.bibliographicCitation | C. L. Staudt, A. Sazonovs, H. Meyerhenke, Networkit: A tool suite for large-scale complex network analysis, Network Science 4 (2016) 508–530. doi:https://doi.org/10.1017/nws.2016.20. | spa |
dcterms.bibliographicCitation | F. Kuhn, P. Schneider, Computing shortest paths and diameter in the hybrid network model, in: Proceedings of the 39th Symposium on Principles of Distributed Computing, 2020, pp. 109–118. doi:https://doi.org/10.1145/3382734.3405719. | spa |
dcterms.bibliographicCitation | S. Vaid, R. Salih, R. Gayathri, J. J. Nair, All pair shortest path using distributed architectures, in: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 2017, pp. 2000–204. doi:https://doi.org/10.1109/ICACCI.2017.8126138. | spa |
dcterms.bibliographicCitation | I. Rahayuda, N. Santiari, Dijkstra and bidirectional dijkstra on determining evacuation routes, in: Journal of Physics: Conference Series, volume 1803, IOP Publishing, 2021, p. 012018. doi:https://doi.org/10.1088/1742-6596/1803/1/012018. | spa |
dcterms.bibliographicCitation | G. Vaira, O. Kurasova, Parallel bidirectional dijkstra’s shortest path algorithm, Databases and Information Systems VI, Frontiers in Artificial Intelligence and Applications 224 (2011) 422–435. | spa |
dcterms.bibliographicCitation | R. Sreejith, K. Mohanraj, J. Jost, E. Saucan, A. Samal, Forman curvature for complex networks, Journal of Statistical Mechanics: Theory and Experiment 2016 (2016) 063206. doi:https://doi.org/10.1088/1742-5468/2016/06/063206. | spa |
dcterms.bibliographicCitation | Forman, Bochner’s method for cell complexes and combinatorial ricci curvature, Discrete & Computational Geometry 29 (2003) 323–374.doi:https://doi.org/10.1007/s00454-002-0743-x. | spa |
dcterms.bibliographicCitation | C.-C. Ni, Y.-Y. Lin, J. Gao, X. Gu, Network alignment by discrete ollivier-ricci flow, in: International symposium on graph drawing and network visualization, Springer, 2018, pp. 447–462. doi:https://doi.org/10.1007/978-3-030-04414-5_32. | spa |
dcterms.bibliographicCitation | R. S. Hamilton, Three-manifolds with positive ricci curvature, Journal of Differential geometry 17 (1982) 255–306. doi:https:// projecteuclid.org/journalArticle/Download?urlId=10.4310\%2Fjdg\%2F1214436922. | spa |
dcterms.bibliographicCitation | M. Girvan, M. E. Newman, Community structure in social and biological networks, Proceedings of the national academy of sciences 99 (2002) 7821–7826. doi:https://doi.org/10.1073/pnas.122653799. | spa |
dcterms.bibliographicCitation | J. Takalo, Extracting hale cycle related components from cosmic-ray data using principal component analysis, Solar Physics 297 (2022) 113. doi:https://doi.org/10.1007/s11207-022-02048-8. | spa |
dcterms.bibliographicCitation | H. Koeksal, N. Demir, A. Kilcik, Analysis of the cosmic ray effects on sentinel-1 sar satellite data, Aerospace 8 (2021) 62. doi:https://doi.org/10.3390/aerospace8030062. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/j.jastp.2025.106418 | |
dc.subject.keywords | Geomagnetic rigidity cutoff | spa |
dc.subject.keywords | Cosmic rays | spa |
dc.subject.keywords | Space weather | spa |
dc.subject.keywords | Topological data analysis | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ciencias Básicas | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1476]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.