Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-Vargas, Luis Miguel
dc.contributor.authorMuñoz-Ordóñez, Julián Fernando
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.coverage.spatialColombia
dc.coverage.temporal2024
dc.date.accessioned2025-01-09T21:09:52Z
dc.date.available2025-01-09T21:09:52Z
dc.date.issued2024-08-30
dc.date.submitted2024-12-25
dc.identifier.citationL. M. Martínez-Vargas, J. F. Muñoz-Ordóñez and Y. T. Solano-Correa, "Aplicación de métodos de aprendizaje profundo para la imputación de niveles de concentración de clorofila-a en la Costa Pacífica colombiana," Revista Científica, vol. 50, no. 2, pp. 85-99, Aug. 2024. Open Access. DOI: 10.14483/23448350.22614.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13211
dc.description.abstractEl sector pesquero en Colombia, que aporta el 0.3 % del Producto Interno Bruto (PIB) y genera exportaciones por USD 45.1 millones (equivalente al 3.3 % del PIB agropecuario), enfrenta desafíos significativos debido a la falta de precisión en la medición de la clorofila-a, un indicador crucial de la salud de los ecosistemas marinos. El uso de imágenes satelitales, particularmente aquellas obtenidas por el sensor MODIS, es esencial para obtener datos precisos. Sin embargo, la alta cobertura nubosa, común en la geografía colombiana, afecta la calidad y la disponibilidad de estas imágenes durante gran parte del año, creando lagunas en los datos críticos para la evaluación del estado de los ecosistemas marinos. Este trabajo propone un algoritmo de aprendizaje profundo basado en series temporales para la predicción de valores perdidos de clorofila-a. La metodología presentada supera las limitaciones impuestas por la cobertura nubosa, alcanzando una precisión R2 superior a 0.8 en uno de los modelos. En este contexto específico, la implementación y la evaluación de diversos modelos de aprendizaje profundo han demostrado ser alternativas efectivas para proporcionar una evaluación más precisa y continua de las áreas pesqueras. Esto ofrece información valiosa para mejorar la gestión y sostenibilidad del sector pesquero en Colombia al añadir un componente temporal a la predicción de valores de clorofila-a. Esto, mediante datos de hasta tres meses previos a la característica objetivo.spa
dc.description.abstractThe fishing sector in Colombia, which contributes 0.3% of the Gross Domestic Product (GDP) and generates USD 45.1 million in exports (equivalent to 3.3% of the agricultural GDP), faces significant challenges due to the lack of precision in measuring chlorophyll-a, a crucial indicator of marine ecosystem health. The use of satellite images, particularly those obtained by the MODIS sensor, is essential for obtaining accurate data. However, the high cloud cover, which is common in Colombian geography, affects the quality and availability of these images for much of the year, creating gaps in critical data for assessing the state of marine ecosystems. This work proposes a deep learning algorithm based on time series for predicting missing chlorophyll-a values. The presented methodology overcomes the limitations imposed by cloud cover, achieving an R2 accuracy above 0.8 in one of the models. In this specific context, the implementation and evaluation of various deep learning models have proven to be effective alternatives in providing a more accurate and continuous assessment of fishing areas. This offers valuable information to improve the management and sustainability of the fishing sector in Colombia by adding a temporal component to the prediction of chlorophyll-a values, using data from up to three months prior to the target featurespa
dc.description.abstractO setor pesqueiro na Colômbia, que contribui com 0,3% do Produto Interno Bruto (PIB) e gera exportações de USD 45,1 milhões (equivalente a 3,3% do PIB agropecuário), enfrenta desafios significativos devido à falta de precisão na medição da clorofila-a, um indicador crucial da saúde dos ecossistemas marinhos. O uso de imagens de satélite, particularmente aquelas obtidas pelo sensor MODIS, é essencial para a obtenção de dados precisos. No entanto, a alta cobertura de nuvens, comum na geografia colombiana, afeta a qualidade e a disponibilidade dessas imagens durante grande parte do ano, criando lacunas nos dados críticos para a avaliação do estado dos ecossistemas marinhos. Este trabalho propõe um algoritmo de aprendizado profundo baseado em séries temporais para a predição de valores ausentes de clorofila-a. A metodologia apresentada supera as limitações impostas pela cobertura de nuvens, atingindo uma precisão R² superior a 0,8 em um dos modelos. Nesse contexto específico, a implementação e a avaliação de diversos modelos de aprendizado profundo demonstraram ser alternativas eficazes para proporcionar uma avaliação mais precisa e contínua das áreas de pesca. Isso oferece informações valiosas para melhorar a gestão e a sustentabilidade do setor pesqueiro na Colômbia, ao adicionar um componente temporal à predição dos valores de clorofila-a, utilizando dados de até três meses anteriores à característica-alvospa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceRevista Científicaspa
dc.titleAplicación de métodos de aprendizaje profundo para la imputación de niveles de concentración de clorofila-a en la Costa Pacífica colombianaspa
dc.title.alternativeApplying Deep Learning Methods for the Imputation of Chlorophyll-a Concentration Levels in the Colombian Pacific Coastspa
dc.title.alternativeAplicação de Métodos de Aprendizado Profundo para a Imputação dos Níveis de Concentração de Clorofila-a na Costa do Pacífico Colombianospa
dcterms.bibliographicCitationAbbas, M. M., Melesse, A. M., Scinto, L. J., Rehage, J. S. (2019). Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: Validation and improvement. Water, 11(8), 1621. https://doi.org/10.3390/W11081621spa
dcterms.bibliographicCitationBarazzetti, L., Scaioni, M., Gianinetto, M. (2014). Automatic co-registration of satellite time series via least squares adjustment. European Journal of Remote Sensing, 47(1), 55-74. https://doi.org/10.5721/EuJRS20144705spa
dcterms.bibliographicCitationBaudena, A., Ser-Giacomi, E., D’Onofrio, D., Capet, X., Cotté, C., Cherel, Y., D’Ovidio, F. (2021). Finescale structures as spots of increased fish concentration in the open ocean. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-94368-1spa
dcterms.bibliographicCitationBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324/METRICSspa
dcterms.bibliographicCitationChen, S., Deng, L., Zhao, J. (2024). Enhanced reconstruction of satellite-derived monthly chlorophyll a concentration with fourier transform convolutional-LSTM. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-14. https://doi.org/10.1109/TGRS.2024.3394399spa
dcterms.bibliographicCitationCho, H., Park, H. (2019). Merged-LSTM and multistep prediction of daily chlorophyll-a concentration for algal bloom forecast. IOP Conference Series: Earth and Environmental Science, 351(1), 012020. https://doi.org/10.1088/1755-1315/351/1/012020spa
dcterms.bibliographicCitationChuvieco Salinero, E. (2002). Teledection ambiental: la observación de la tierra desde el espacio. Ariel.spa
dcterms.bibliographicCitationDash, A., Jetley, S., Rege, A., Chopra, S., Sawant, R. (2022). Drought prediction and water quality estimation using satellite images and machine learning [Artículo de conferencia]. 7th International Conference on Communication and Electronics Systems, ICCES 2022, India. https://doi.org/10.1109/ICCES54183.2022.9835727spa
dcterms.bibliographicCitationDu, Z., Wu, S., Kwan, M. P., Zhang, C., Zhang, F., Liu, R. (2018). A spatiotemporal regression-kriging model for spacetime interpolation: A case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China. International Journal of Geographical Information Science, 32(10), 1927-1947. https://doi.org/10.1080/13658816.2018.147 1607spa
dcterms.bibliographicCitationEssien, P., Figueiredo, C. A. O. B., Takahashi, H., Klutse, N. A. B., Wrasse, C. M., Afonso, J. M. de S., Quispe, D. P., Lomotey, S. O., Ayorinde, T. T., Sobral, J. H. A., Eghan, M. J., Sackey, S. S., Barros, D., Bilibio, A. V., Nkrumah, F., Quagraine, K. A. (2022). Intertropical convergence zone as the possible source mechanism for southward propagating medium-scale traveling ionospheric disturbances over South American low-latitude and equatorial region. Atmosphere, 13(11), e1836. https://doi.org/10.3390/ATMOS13111836spa
dcterms.bibliographicCitationEze, E., Kirby, S., Attridge, J., Ajmal, T. (2021). Time series chlorophyll-a concentration data analysis: A novel forecasting model for aquaculture industry. Engineering Proceedings, 5(1), e27. https://doi.org/10.3390/ENGPROC2021005027spa
dcterms.bibliographicCitationHänninen, J., Mäkinen, K., Nordhausen, K., Laaksonlaita, J., Loisa, O., Virta, J. (2022). The “Seili-index” for the prediction of chlorophyll-α levels in the archipelago sea of the northern Baltic Sea, southwest Finland. Environmental Modeling & Assessment, 27, 571-584. https://doi.org/10.1007/s10666-022-09822-9spa
dcterms.bibliographicCitationHu, H., Fu, X., Li, H., Wang, F., Duan, W., Zhang, L., Liu, M. (2023). Prediction of lake chlorophyll concentration using the BP neural network and Sentinel-2 images based on time features. Water Science and Technology, 87(3), 539-554. https://doi.org/10.2166/WST.2023.019spa
dcterms.bibliographicCitationLi, X., Sha, J., Wang, Z. L. (2018). Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake. Environmental Science and Pollution Research, 25(20), 19488-19498. https://doi.org/10.1007/S11356-018-2147-3/METRICSspa
dcterms.bibliographicCitationLuis-xmart/framework (s.f.). https://gitfront.io/r/Luis-xmart/3nDgRRysh6j3/framework-chl-temp/spa
dcterms.bibliographicCitationMa, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https://doi.org/10.1016/J.ISPRSJPRS.2019.04.015spa
dcterms.bibliographicCitationNascimento Silva, H. A., Rosato, A., Altilio, R., Panella, M. (2018). Water quality prediction based on wavelet neural networks and remote sensing [Artículo de conferencia]. International Joint Conference on Neural Networks, Rio de Janeiro, Brasil. https://doi.org/10.1109/IJCNN.2018.8489662spa
dcterms.bibliographicCitationPapenfus, M., Schaeffer, B., Pollard, A. I., Loftin, K. (2020). Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environmental Monitoring and Assessment, 192(12), 1-22. https://doi.org/10.1007/S10661-020-08631-5spa
dcterms.bibliographicCitationPark, Y., Cho, K. H., Park, J., Cha, S. M., Kim, J. H. (2015). Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Science of the Total Environment, 502, 31-41. https://doi.org/10.1016/J.SCITOTENV.2014.09.005spa
dcterms.bibliographicCitationPoddar, S., Chacko, N., Swain, D. (2019). Estimation of chlorophyll-a in northern coastal bay of Bengal using Landsat-8 OLI and Sentinel-2 MSI sensors. Frontiers in Marine Science, 6, e00598. https://doi.org/10.3389/FMARS.2019.00598spa
dcterms.bibliographicCitationSalomonson, V. V., Barnes, W., Masuoka, E. J. (2006). Introduction to MODIS and an overview of associated activities. Earth Science Satellite Remote Sensing: Science and Instruments, 1, 12-32. https://doi.org/10.1007/978-3-540-37293-6_2spa
dcterms.bibliographicCitationShin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S. W., Lee, C. S., Kim, T. Y., Park, M. S., Park, J., Heo, T. Y. (2020). Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods. Water, 12(6), 1822. https://doi.org/10.3390/W12061822spa
dcterms.bibliographicCitationSilveira Kupssinskü, L., Thomassim Guimarães, T., Menezes de Souza, E., C. Zanotta, D., Roberto Veronez, M., Gonzaga, L., Mauad, F. F. (2020). A method for chlorophyll-a and suspended solids prediction through remote sensing and machine learning. Sensors, 20(7), e2125. https://doi.org/10.3390/s20072125spa
dcterms.bibliographicCitationStramska, M., Jakacki, J. (2024). Variability of chlorophyll a concentration in surface waters of the open Baltic Sea. Oceanologia, 66(2), 365-380. https://doi.org/10.1016/J.OCEANO.2024.02.003spa
dcterms.bibliographicCitationWang, G., Hao, J., Ma, J., Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications, 38(1), 223-230. https://doi.org/10.1016/J.ESWA.2010.06.048spa
dcterms.bibliographicCitationWang, H., Yan, X., Chen, H., Chen, C., Guo, M. (2015). Chlorophyll-a predicting model based on dynamic neural network. Applied Artificial Intelligence, 29(10), 962-978. https://doi.org/10.1080/08839514.2015.1097142spa
dcterms.bibliographicCitationWilson, A. M., Jetz, W. (2016). Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLOS Biology, 14(3), e1002415. https://doi.org/10.1371/JOURNAL.PBIO.1002415spa
dcterms.bibliographicCitationYajima, H., Derot, J. (2018). Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases. Journal of Hydroinformatics, 20(1), 191-205. https://doi.org/10.2166/HYDRO.2017.010spa
dcterms.bibliographicCitationYu, X., Shen, J., Zheng, G., Du, J. (2022). Chlorophyll-a in Chesapeake Bay based on VIIRS satellite data: Spatiotemporal variability and prediction with machine learning. Ocean Modelling, 180, e102119. https://doi.org/10.1016/j.ocemod.2022.102119spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.14483/23448350.22614
dc.subject.keywordsAprendizaje profundospa
dc.subject.keywordsChlorophyll-aspa
dc.subject.keywordsCobertura nubosaspa
dc.subject.keywordsMODISspa
dc.subject.keywordsPredicción de valores perdidosspa
dc.subject.keywordsSector pesquerospa
dc.subject.keywordsSeries temporalesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.