Mostrar el registro sencillo del ítem
Fired heaters optimization by estimating real-time combustion products using numerical methods
dc.contributor.author | Sánchez, Ricardo | |
dc.contributor.author | Palencia Díaz, Argemiro | |
dc.contributor.author | Fábregas Villegas, Jonathan | |
dc.contributor.author | Velilla Díaz, Wilmer | |
dc.date.accessioned | 2024-12-11T15:59:44Z | |
dc.date.available | 2024-12-11T15:59:44Z | |
dc.date.issued | 2024-12-09 | |
dc.date.submitted | 2024-12-10 | |
dc.identifier.citation | Sánchez, R., Palencia-Díaz, A., Fábregas-Villegas, J., & Velilla-Díaz, W. (2024). Fired Heaters Optimization by Estimating Real-Time Combustion Products Using Numerical Methods. Energies, 17(23), 6190. https://doi.org/10.3390/en17236190 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/13120 | |
dc.description.abstract | : Fired heaters upstream of distillation towers, despite their optimal thermal efficiency, often suffer from performance decline due to fluctuations in fuel composition and unpredictable operational parameters. These heaters have high energy consumption, as fuel properties vary depending on the source of the crude oil. This study aims to optimize the combustion process of a three-gas mixture, mainly refinery gas, by incorporating more stable fuels such as natural gas and liquefied petroleum gas (LPG) to improve energy efficiency and reduce LPG consumption. Using real-time gas chromatographymass spectrometry (GC-MS) data, we accurately calculate the mass fractions of individual compounds, allowing for more precise burner flow rate determinations. Thermochemical data are used to calculate equilibrium constants as a function of temperature, with the least squares method, while the Newton– Raphson method solves the resulting nonlinear equations. Four key variables (X4 , X6, X8, and X11), representing H2,CO,O2, and N2, respectively, are defined, and a Jacobian matrix is constructed to ensure convergence within a tolerance of 1 × 10−6 over a maximum of 200 iterations, implemented via Python 3.10.4 and the scipy.optimize library. The optimization resulted in a reduction in LPG consumption by over 50%. By tailoring the fuel supply to the specific thermal needs of each processing unit, we achieved substantial energy savings. For instance, furnaces in the hydrocracking unit, which handle cleaner subproducts and benefit from hydrogen’s adiabatic reactions, require much less energy than those in the primary distillation unit, where high-impurity crude oil is processed. | spa |
dc.format.extent | 14 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Energies | spa |
dc.title | Fired heaters optimization by estimating real-time combustion products using numerical methods | spa |
dcterms.bibliographicCitation | Garg, A. A New Approach to Optimizing Fired Heaters. 2010. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/94037 (accessed on 19 September 2024). | spa |
dcterms.bibliographicCitation | Garg, A. Optimize fired heater operations to save money. Hydrocarb. Process. 1997, 76, 97–112. | spa |
dcterms.bibliographicCitation | Litvinenko, V. The role of hydrocarbons in the global energy agenda: The focus on liquefied natural gas. Resources 2020, 9, 59. | spa |
dcterms.bibliographicCitation | Filimonova, I.V.; Cherepanova, D.; Provornaya, I.; Kozhevin, V.; Nemov, V. The dependence of sustainable economic growth on the complex of factors in hydrocarbons-exporting countries. Energy Rep. 2020, 6, 68–73. | spa |
dcterms.bibliographicCitation | Tcvetkov, P.; Cherepovitsyn, A.; Makhovikov, A. Economic assessment of heat and power generation from small-scale liquefied natural gas in Russia. Energy Rep. 2020, 6, 391–402. | spa |
dcterms.bibliographicCitation | Garba, M.D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M.F.; Ghanem, A.S.; Humayun, M. CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756. | spa |
dcterms.bibliographicCitation | Miller, S.A.; Wilkinson, J.D.; Lynch, J.T.; Hudson, H.M.; Cuellar, K.T.; Johnke, A.F.; Lewis, W.L. Hydrocarbon Gas Processing. U.S. Patent 10,227,273, 12 March 2019. | spa |
dcterms.bibliographicCitation | Qamar, R.A.; Mushtaq, A.; Ulla, A.; Ali, Z.U. Simulation of Liquefied Petroleum Gas Recovery from Off Gases in a Fuel Oil Refinery. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 73, 109–130. | spa |
dcterms.bibliographicCitation | Eshaghi, S.; Hamrang, F. An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant. Energy 2021, 228, 120594. | spa |
dcterms.bibliographicCitation | Cala, O.M.; Stand, L.M.; Kafarov, V.; Rueda, J.S. Efecto de la composición del gas de refinería sobre las características del proceso de combustión. Rev. Ing. Univ. Medellín 2013, 12, 101–111. | spa |
dcterms.bibliographicCitation | Arefin, M.A.; Nabi, M.N.; Akram, M.W.; Islam, M.T.; Chowdhury, M.W. A review on liquefied natural gas as fuels for dual fuel engines: Opportunities, challenges and responses. Energies 2020, 13, 6127. | spa |
dcterms.bibliographicCitation | Amell, A.; Barraza, L.; Gómez, E. Tecnología de la Combustión de Gases y Quemadores Atmosféricos de Premezcla. Línea, Disponible. 1996. Available online: http://es.scribd.com/doc/73707395/3-Quemadores-Atmosfericos-1 | spa |
dcterms.bibliographicCitation | Murshed, M.; Alam, R.; Ansarin, A. The environmental Kuznets curve hypothesis for Bangladesh: The importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environ. Sci. Pollut. Res. 2021, 28, 17208–17227. | spa |
dcterms.bibliographicCitation | Kim, S.Y.; Costa, A.L.; Bagajewicz, M.J. New robust approach for the globally optimal design of fired heaters. Chem. Eng. Res. Des. 2023, 197, 434–448. | spa |
dcterms.bibliographicCitation | Ghorashi, S.A.; Khandelwal, B. Toward the ultra-clean and highly efficient biomass-fired heaters. A review. Renew. Energy 2023, 205, 631–647. | spa |
dcterms.bibliographicCitation | Qasim, F.; Lee, D.H.; Won, J.; Ha, J.K.; Park, S.J. Development of Advanced Advisory System for Anomalies (AAA) to Predict and Detect the Abnormal Operation in Fired Heaters for Real Time Process Safety and Optimization. Energies 2021, 14, 7183. | spa |
dcterms.bibliographicCitation | Thorat, S.; McQueen, G.; Luzunaris, P.T. The role of optimal design and application of heat tracing systems to improve the energy conservation in petrochemical facilities. IEEE Trans. Ind. Appl. 2013, 50, 163–173. | spa |
dcterms.bibliographicCitation | Masoumi, M.E.; Izakmehri, Z. Improving of refinery furnaces efficiency using mathematical modeling. Int. J. Model. Optim. 2011, 1, 74. | spa |
dcterms.bibliographicCitation | EU. A Clean Planet for All, a European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Depth Analysis in Support of the Commission Communication Com; European Commission: Brussels, Belgium, 2018; Volume 773. | spa |
dcterms.bibliographicCitation | Wildy, F.; Instruments, A.P. Fired heater optimization. In Technical Sales Support Manager; AMETEK Process Instruments: Pittsburgh, PA, USA, 2000. | spa |
dcterms.bibliographicCitation | Rico, J.C.S.; Sánchez, Y.A.C. Análisis teórico de la combustión en quemadores de gas natural. Sci. Tech. 2005, 3, 139–143. | spa |
dcterms.bibliographicCitation | Bouras, F.; Khaldi, F. Optimization of Combustion Efficiency Using a Fuel Composition Based on CH4 and/or H2. Russ. J. Appl. Chem. 2020, 93, 1954–1959. | spa |
dcterms.bibliographicCitation | Horbaj, P. Simulation method for optimization of a mixture of fuel gases. Gas Waerme Int. 2000, 49, 250–252. | spa |
dcterms.bibliographicCitation | Kazi, S.R.; Sundar, K.; Srinivasan, S.; Zlotnik, A. Modeling and optimization of steady flow of natural gas and hydrogen mixtures in pipeline networks. Int. J. Hydrogen Energy 2024, 54, 14–24. | spa |
dcterms.bibliographicCitation | Simsek, S.; Uslu, S.; Simsek, H.; Uslu, G. Improving the combustion process by determining the optimum percentage of liquefied petroleum gas (LPG) via response surface methodology (RSM) in a spark ignition (SI) engine running on gasoline-LPG blends. Fuel Process. Technol. 2021, 221, 106947. | spa |
dcterms.bibliographicCitation | Derikvand, H.; Dehaj, M.S.; Taghavifar, H. The effect of different sampling method integrated in NSGA II optimization on performance and emission of diesel/hydrogen dual-fuel CI engine. Appl. Soft Comput. 2022, 128, 109434. | spa |
dcterms.bibliographicCitation | Saifullin, E.; Larionov, V.; Busarov, A.; Busarov, V. Optimization of hydrocarbon fuels combustion variable composition in thermal power plants. J. Phys. Conf. Ser. 2016, 669, 012037. | spa |
dcterms.bibliographicCitation | Patrón, G.D.; Ricardez-Sandoval, L. An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture. Appl. Energy 2022, 308, 118302. | spa |
dcterms.bibliographicCitation | Cote Florez, M.S. Revision de Alternativas Operativas Para el Cumplimiento de Especificaciones de Calidad de Gas en un Campo Productor. Ph.D. Thesis, Universidad Industrial de Santander, Escuela De Ingeniería de Petróleos, Bucaramanga, Colombia, 2018. | spa |
dcterms.bibliographicCitation | Arroyo, H.; Nichiren, S.; Alonso, M.; Delfin, F. Calidad y Medición del Gas Natural. 2006. Available online: https://es.scribd.com/document/462864821/Calidad-y-medicion-del-gas-natural | spa |
dcterms.bibliographicCitation | Chomiak, J.; Longwell, J.; Sarofim, A. Combustion of low calorific value gases; problems and prospects. Prog. Energy Combust. Sci. 1989, 15, 109–129. | spa |
dcterms.bibliographicCitation | Pinzón Vargas, B.L.; Plazas Puentes, M.I. Evaluación Técnico-Financiera de las Tecnologías de Construcción Modular para la Refinación de Petróleo Crudo en el Proyecto RefiBoyacá. Bachelor’s Thesis, Fundación Universidad de América, Bogotá, Colombia, 2018. | spa |
dcterms.bibliographicCitation | Qin, C.; Li, J.; Yang, C.; Ai, B.; Zhou, Y. Comparative Study of Parameter Extraction from a Solar Cell or a Photovoltaic Module by Combining Metaheuristic Algorithms with Different Simulation Current Calculation Methods. Energies 2024, 17, 2284. | spa |
dcterms.bibliographicCitation | Olikara, C.; Borman, G.L. A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to IC Engines; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1975. | spa |
dcterms.bibliographicCitation | Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. | spa |
dcterms.bibliographicCitation | Turns, S.R. Introdução à Combustão-: Conceitos e Aplicações; AMGH Editora: Porto Alegre, Brazil, 2013. | spa |
dcterms.bibliographicCitation | Worters, M.; Millard, D.; Hunter, G.; Helling, C.; Woitke, P. Comparison Catalogue of Gas-Equilibrium Constants, Kp. 2017. Available online: https://research-repository.st-andrews.ac.uk/handle/10023/12242 | spa |
dcterms.bibliographicCitation | Klotz, I.M. Chemical Thermodynamics; WA Benjamin Inc.: New York, NY, USA, 1964. | spa |
dcterms.bibliographicCitation | Yıldız, M. Chemical equilibrium based combustion model to evaluate the effects of H2 addition to biogases with different CO2 contents. Int. J. Hydrogen Energy 2024, 52, 1334–1344. | spa |
dcterms.bibliographicCitation | Way, R. Methods for determination of composition and thermodynamic properties of combustion products for internal combustion engine calculations. Proc. Inst. Mech. Eng. 1976, 190, 687–697 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/en17236190 | |
dc.subject.keywords | Optimizing combustion; | spa |
dc.subject.keywords | Adiabatic flame | spa |
dc.subject.keywords | Newton–Raphson | spa |
dc.subject.keywords | Fired heaters | spa |
dc.subject.keywords | Refinery gas | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.