Mostrar el registro sencillo del ítem

dc.contributor.authorFajardo Cuadro, Juan
dc.contributor.authorBarreto, Deibys
dc.contributor.authorYabrudy, Daniel
dc.contributor.authorPiña-Martínez, Andrés
dc.contributor.authorPupo, Oscar
dc.contributor.authorBuelvas, Ana
dc.coverage.spatialColombia, Bolívar, Cartagena
dc.date.accessioned2024-12-09T20:42:36Z
dc.date.available2024-12-09T20:42:36Z
dc.date.issued2024-11-07
dc.date.submitted2024-12-09
dc.identifier.citationJ. Fajardo Cuadro, D. Barreto, D. Yabrudy, A. Piña-Martinez, O. Pupo, and A. Buelvas, “Energetic and exergoeconomic evaluation of a stig cycle and cooled inlet air gas turbine powered by mixtures of natural gas and H2 in tropical climates,” Heliyon, vol. 10, no. 22, p. e40250, Nov. 2024, doi: 10.1016/j.heliyon.2024.e40250.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12953
dc.description.abstractUsing pure hydrogen (H2) or mixtures of H2 and natural gas in gas-fired power plants represents a viable route to decarbonize electric power generation. This study models a system designed to cool the air at the compressor inlet to 8.8 °C, achieve a flue gas oxygen percentage of 11.46 %, and produce 44.4 MW with a fuel mix ranging from 0 to 100 % H2 operating in tropical climates, where temperatures exceed 30 °C and relative humidity exceeds 80 %. The analysis is based on energy, exergy, and exergoeconomic balance to obtain performance indicators that characterize plant operations. The results show that with 100 % H2, the PCI increases by 144 % compared to 100 % natural gas. Furthermore, the energy analysis indicates that for every 10 % volume increase in the H2 fuel mix, the CO2 concentration decreased by 34 kg/m³, the NOx concentration increased by 1 kg/m³, the dew point temperature increased by 0.5 °C, the energy efficiency improved by 4.5 percentage points, the heat rate decreased by 7 %, and the specific fuel consumption decreased by 8.5 %. Furthermore, the total exergy destruction increased by 14.83 %, and the total exergy efficiency decreased by 2.7 percentage points. The exergoeconomic analysis shows that the specific cost of electric energy per GJ decreases by 10 % for H2 contents higher than 80 % by volume. This work demonstrates that generating energy from gas turbine power plants with lower CO2 equivalent emissions is possible. On the other hand, the effects of moisture content in exhaust gases and NOX are known due to the greater presence of H2 and higher temperature combustionspa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceHeliyonspa
dc.titleEnergetic and exergoeconomic evaluation of a stig cycle and cooled inlet air gas turbine powered by mixtures of natural gas and H2 in tropical climatesspa
dcterms.bibliographicCitationIEA, World Energy Outlook 2023, 2023. Https://Www.Iea.Org/Reports/World-Energy-Outlook-2023spa
dcterms.bibliographicCitationS. Orjuela-Abril, J.P. Rojas-Suarez, ´ J.E. Duarte Forero, Study of performance and emissions in diesel engines operating with biodiesel from soybean oil and water emulsions, Aibi Revista de Investigacion, ´ Administracion ´ e Ingeniería 9 (2021) 19–29, https://doi.org/10.15649/2346030x.935.spa
dcterms.bibliographicCitation] W. Li, M. Nadeem, Decarbonizing progress: exploring the nexus of renewable energy, digital economy, and economic development in South American countries, Heliyon 10 (2024) e33446, https://doi.org/10.1016/j.heliyon.2024.e33446spa
dcterms.bibliographicCitationS.C. Obiora, O. Bamisile, Y. Hu, D.U. Ozsahin, H. Adun, Assessing the decarbonization of electricity generation in major emitting countries by 2030 and 2050: transition to a high share renewable energy mix, Heliyon 10 (2024) e28770, https://doi.org/10.1016/j.heliyon.2024.e28770.spa
dcterms.bibliographicCitationK. Topolski, E.P. Reznicek, B.C. Erdener, C.W. San Marchi, J.A. Ronevich, L. Fring, K. Simmons, O.J. Guerra Fernandez, B.-M. Hodge, M. Chung, Hydrogen Blending into Natural Gas Pipeline Infrastructure: Review of the State of Technology, n.d. www.nrel.gov/publications.spa
dcterms.bibliographicCitationA. di Gaeta, F. Reale, F. Chiariello, P. Massoli, A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid, Energy 129 (2017) 299–320, https://doi.org/10.1016/j.energy.2017.03.173.spa
dcterms.bibliographicCitationS. Meziane, A. Bentebbiche, Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine, Int. J. Hydrogen Energy 44 (2019) 15610–15621, https://doi.org/10.1016/j.ijhydene.2019.04.128spa
dcterms.bibliographicCitation] G.E. Marin, B.M. Osipov, A.V. Titov, A.R. Akhmetshin, Gas turbine operating as part of a thermal power plant with hydrogen storages, Int. J. Hydrogen Energy 48 (2023) 33393–33400, https://doi.org/10.1016/j.ijhydene.2023.05.109.spa
dcterms.bibliographicCitationS. Oberg, ¨ M. Odenberger, F. Johnsson, The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study, Int. J. Hydrogen Energy 47 (2022) 31684–31702, https://doi.org/10.1016/j.ijhydene.2022.07.075.spa
dcterms.bibliographicCitationR. Banihabib, T. Lingstadt, ¨ M. Wersland, P. Kutne, M. Assadi, Development and testing of a 100 kW fuel-flexible micro gas turbine running on 100% hydrogen, Int. J. Hydrogen Energy 49 (2024) 92–111, https://doi.org/10.1016/j.ijhydene.2023.06.317spa
dcterms.bibliographicCitation] S. Tamang, H. Park, Numerical investigation of combustion characteristics for hydrogen mixed fuel in a can-type model of the gas turbine combustor, Int. J. Hydrogen Energy 48 (2023) 11493–11512, https://doi.org/10.1016/j.ijhydene.2022.05.273.spa
dcterms.bibliographicCitationS. Benaissa, B. Adouane, S.M. Ali, S.S. Rashwan, Z. Aouachria, Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors, Therm. Sci. Eng. Prog. 27 (2022) 101178, https://doi.org/10.1016/j.tsep.2021.101178.spa
dcterms.bibliographicCitationD. Pashchenko, Hydrogen-rich gas as a fuel for the gas turbines: a pathway to lower CO2 emission, Renew. Sustain. Energy Rev. 173 (2023) 113117, https://doi. org/10.1016/j.rser.2022.113117.spa
dcterms.bibliographicCitationO. Olaniyi, J. Incer-Valverde, G. Tsatsaronis, T. Morosuk, Exergetic and economic evaluation of natural gas/hydrogen blends for power generation, Journal of Energy Resources Technology, Transactions of the ASME 145 (2023), https://doi.org/10.1115/1.4056448.spa
dcterms.bibliographicCitationJ. Incer-Valverde, Y. Lyu, G. Tsatsaronis, T. Morosuk, Economic evaluation of a large-scale liquid hydrogen regasification system, Gas Science and Engineering 119 (2023) 205150, https://doi.org/10.1016/j.jgsce.2023.205150.spa
dcterms.bibliographicCitationB.B. Skabelund, C.D. Jenkins, E.B. Stechel, R.J. Milcarek, Thermodynamic and emission analysis of a hydrogen/methane fueled gas turbine, Energy Convers. Manag. X 19 (2023) 100394, https://doi.org/10.1016/j.ecmx.2023.100394spa
dcterms.bibliographicCitationY. Koç, H. Yaglı, ˘ A. Gorgülü, ¨ A. Koç, Analysing the performance, fuel cost and emission parameters of the 50 MW simple and recuperative gas turbine cycles using natural gas and hydrogen as fuel, Int. J. Hydrogen Energy 45 (2020) 22138–22147, https://doi.org/10.1016/j.ijhydene.2020.05.267spa
dcterms.bibliographicCitation] J.B.W. Kok, E.A. Haselhoff, Thermodynamic analysis of the thermal and exergetic performance of a mixed gas-steam aero derivative gas turbine engine for power generation, Heliyon 9 (2023) e18927, https://doi.org/10.1016/j.heliyon.2023.e18927.spa
dcterms.bibliographicCitationY. Cengel, M. Boles, M. Kanoglu, Thermodynamics: an Engineering Approach, ninth ed., Mc Graw-Hill, New York, 2019.spa
dcterms.bibliographicCitationH. Athari, S. Soltani, M. Rosen, S. Mahmoudi, T. Morosuk, Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling, Sustainability 7 (2015) 12236–12257, https://doi.org/10.3390/su70912236spa
dcterms.bibliographicCitationD. Barreto, J. Fajardo, G.C. Caballero, Y.C. Escorcia, Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine, Energy Technol. 9 (2021), https://doi.org/10.1002/ente.202000993spa
dcterms.bibliographicCitationJ. Szargut, Exergy Method: Technical and Ecological Applications, WIT Press, Poland, 2005.spa
dcterms.bibliographicCitationE. Açıkkalp, H. Aras, A. Hepbasli, Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine, Appl. Therm. Eng. 67 (2014) 388–395, https://doi.org/10.1016/j.applthermaleng.2014.03.005.spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization, WILEY, 1995.spa
dcterms.bibliographicCitationA. Abusoglu, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 – formulations, Appl. Therm. Eng. 29 (2009) 234–241, https://doi.org/10.1016/j.applthermaleng.2008.02.025.spa
dcterms.bibliographicCitationTest Gases-Test Pressures-Appliance Categories, 2003.spa
dcterms.bibliographicCitationI. Dincer, Comprehensive Energy System, Elsevier, Amsterdam, 2018spa
dcterms.bibliographicCitationA. Alashkar, M. Gadalla, Thermo-economic analysis of an integrated solar power generation system using nanofluids, Appl. Energy 191 (2017) 469–491, https://doi.org/10.1016/j.apenergy.2017.01.084.spa
dcterms.bibliographicCitationA. Baghernejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an integrated solar combined cycle system (ISCCS) using genetic algorithm, Energy Convers. Manag. 52 (2011) 2193–2203, https://doi.org/10.1016/j.enconman.2010.12.019spa
dcterms.bibliographicCitationM. Morid, M.H. Khoshgoftar Manesh, 6E evaluation of an innovative polygeneration system consisting of gas turbine cycle with CO2 capture, ejector refrigeration cycle, steam Rankine cycle, solar tower and MEDAD unit, Therm. Sci. Eng. Prog. 46 (2023) 102234, https://doi.org/10.1016/j.tsep.2023.102234.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.heliyon.2024.e40250
dc.subject.keywordsHydrogenspa
dc.subject.keywordsNatural gasspa
dc.subject.keywordsGas turbinespa
dc.subject.keywordsAdvanced exergy analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.