Mostrar el registro sencillo del ítem

dc.contributor.authorPalencia Díaz, Argemiro
dc.contributor.authorVelilla Díaz, Wilmer
dc.contributor.authorContreras, Victor
dc.contributor.authorGuillén-Rujano, Renny
dc.contributor.authorHernández-Pérez, Adrián
dc.date.accessioned2024-12-06T16:24:14Z
dc.date.available2024-12-06T16:24:14Z
dc.date.issued2024-12-06
dc.date.submitted2024-12-06
dc.identifier.citationGuillén-Rujano, R., Contreras, V., Palencia-Díaz, A., Velilla-Díaz, W., & Hernández-Pérez, A. (2024). Shear Stress Solutions for Curved Beams: A Structural Analysis Approach. Materials, 17(23), 5982. https://doi.org/10.3390/ma17235982spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12952
dc.description.abstractThe shear stress on isotropic curved beams with compact sections and variable thickness is investigated. Two new solutions, based on Cook’s proposal and the mechanics of materials approach, were developed and validated using computational finite element models (FEM) for four typical cross-sections (rectangular, circular, elliptical, and triangular) used in civil and mechanical structures, constituting a novel approach to predicting shear stresses in curved beams. They predict better results than other reported equations, are simpler and easier for engineers to use quickly, and join the group of equations found using the theory of elasticity, thereby expanding the field of knowledge. The results reveal that both equations are suitable to predict the shear stress on a curved beam with outer/inner radii ratios in the interval 1 < b/a ≤5 aspect ratios. There is a maximum relative difference between the present solutions and finite element models of 8% within 1 < b/a ≤2, and a maximum of 16% in 2 < b/a ≤5. Additionally, the neutral axis of the curved beam can be located with the proposed solution and its position matches with that predicted by FEM. The displacement at the top face of the end of the curved beam induces a difference in the shear stress results of 8.0%, 7.0%, 6.5%, and 2.9%, for the circular, rectangular, elliptical, and triangular cross-sections, respectively, when a 3D FEM solution is considered. For small b/a ratios (near 1), the present solutions can be reduced to Collignon’s formula.
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleShear stress solutions for curved beams: a structural analysis approachspa
dcterms.bibliographicCitationWu, S.; Li, Y.; Bao, Y.; Zhu, J.; Wu, H. Examination of Beam Theories for Buckling and Free Vibration of Functionally Graded Porous Beams. Materials 2024, 17, 3080.spa
dcterms.bibliographicCitationBorković, A.; Marussig, B.; Radenković, G. Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli–Euler beam. Comput. Methods Appl. Mech. Eng. 2022, 390, 114447.spa
dcterms.bibliographicCitationZhao, X.; Zhou, Y.; Shao, Y.B.; Liu, B.; Zhou, R. Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green’s functions. Eng. Mech. 2020, 37, 12–27.spa
dcterms.bibliographicCitationNicolalde, J.F.; Yaselga, J.; Martínez-Gómez, J. Selection of a sustainable structural beam material for rural housing in Latin América by multicriteria decision methods means. Appl. Sci. 2022, 12, 1393spa
dcterms.bibliographicCitationZhang, S.; Qian, D.; Zhang, Z.; Ge, H. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure. Materials 2024, 17, 1702.spa
dcterms.bibliographicCitationZhang, P.; Qing, H.; Gao, C.F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 2020, 245, 112362.spa
dcterms.bibliographicCitationBhagatji, J.D.; Kravchenko, O.G.; Asundi, S. Mechanics of Pure Bending and Eccentric Buckling in High-Strain Composite Structures. Materials 2024, 17, 796.spa
dcterms.bibliographicCitationHam, S.; Ji, S.; Cheon, S.S. The design of a piecewise-integrated composite bumper beam with machine-learning algorithms. Materials 2024, 17, 602.spa
dcterms.bibliographicCitationYe, S.Q.; Mao, X.Y.; Ding, H.; Ji, J.C.; Chen, L.Q. Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 2020, 168, 105294.spa
dcterms.bibliographicCitationSong, D.; Kim, R.; Choi, K.; Shin, D.; Lee, S. Effects of Beam Shape on the Microstructures and Mechanical Properties during Thin-Foil Laser Welding. Metals 2023, 13, 916.spa
dcterms.bibliographicCitationHe, X.T.; Wang, X.; Zhang, M.Q.; Sun, J.Y. The Thermal Stress Problem of Bimodular Curved Beams under the Action of End-Side Concentrated Shear Force. Materials 2023, 16, 5221.spa
dcterms.bibliographicCitationCao, X.; Ni, J.; Shao, C.; Yang, X.; Lou, C. Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks. Materials 2023, 16, 4164spa
dcterms.bibliographicCitationVelilla-Díaz, W.; Pinzón, R.; Guillén-Rujano, R.; Pérez-Ruiz, J.; de Lacalle, L.; Palencia, A.; Maury, H.; Zambrano, H. Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique. Metals 2024, 14, 182.spa
dcterms.bibliographicCitationLindeburg, M.R.; Baradar, M. Seismic Design of Building Structures; Professional Publications, Inc.: Belmont, CA, USA, 2001.spa
dcterms.bibliographicCitationSchierle, G. Architectural Structures Excerpts; University of Southern California: Los Angeles, CA, USA, 2006.spa
dcterms.bibliographicCitationChen, W.F.; Duan, L. Bridge Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2000.spa
dcterms.bibliographicCitationPollock, T.I.; Panagiotopoulou, O.; Hocking, D.P.; Evans, A.R. Taking a stab at modelling canine tooth biomechanics in mammalian carnivores with beam theory and finite-element analysis. R. Soc. Open Sci. 2022, 9, 220701.spa
dcterms.bibliographicCitationLe Huec, J.C.; Droulout, T.; Boue, L.; Dejour, E.; Ramos-Pascual, S.; Bourret, S. A novel device with pedicular anchorage provides better biomechanical properties than balloon kyphoplasty for the treatment of vertebral compression fractures. J. Exp. Orthop. 2023, 10, 71.spa
dcterms.bibliographicCitationMinutolo, V.; Esposito, L.; Sacco, E.; Fraldi, M. Designing stress for optimizing and toughening truss-like structures. Meccanica 2020, 55, 1603–1622.spa
dcterms.bibliographicCitationMedina, L.; Gilat, R.; Ilic, B.; Krylov, S. Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sens. Actuators A Phys. 2014, 220, 323–332.spa
dcterms.bibliographicCitationPatil, A.S.; Arnold, E. Characterization of standard structural CFRP beam shapes for UAS VHF antenna applications. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021; p. 1803.spa
dcterms.bibliographicCitationAllen, E.; Zalewski, W. Form and Forces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.spa
dcterms.bibliographicCitationGozluklu, B.; Uyar, I.; Coker, D. Intersonic delamination in curved thick composite laminates under quasi-static loading. Mech. Mater. 2015, 80, 163–182.spa
dcterms.bibliographicCitationPeterson, D.R.; Bronzino, J.D. Biomechanics: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2008.spa
dcterms.bibliographicCitationWinkelstein, B.A. Orthopaedic Biomechanics; CRC Press: Boca Raton, FL, USA, 2013.spa
dcterms.bibliographicCitationTimoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw-Hill Inc.: New York, NY, USA, 1970.spa
dcterms.bibliographicCitationEason, G. The elastic-plastic bending of a compressible curved bar. Appl. Sci. Res. 1960, 9, 53–63.spa
dcterms.bibliographicCitationLekhnitskii, S.G.; Tsai, S.W.; Cheron, T. Anisotropic Plates; Gordon and Breach: New York, NY, USA, 1968.spa
dcterms.bibliographicCitationKedward, K.T.; Wilson, R.S.; McLean, S.K. Flexure of simply curved composite shapes. Composites 1989, 20, 527–536.spa
dcterms.bibliographicCitationBagci, C. Exact Elasticity Solutions for Stresses and Deflections in Curved Beams and Rings of Exponential and T-Sections. J. Mech. Des. 1993, 115, 346–358.spa
dcterms.bibliographicCitationUgural, A.C.; Fenster, S.K. Advanced Mechanics of Materials and Applied Elasticity; Pearson Education Inc.: Boston, MA, USA, 2020.spa
dcterms.bibliographicCitationSloboda, A.; Honarmandi, P. Generalized Elasticity Method for Curved Beam Stress Analysis: Analytical and Numerical Comparisons for a Lifting Hook. Mech. Based Des. Struct. Mach. 2007, 35, 319–332.spa
dcterms.bibliographicCitationBlack, W.E. Discussion: Stresses in Curved Beams—A Tabular Method of Solution Based on Winkler’s Theory. J. Appl. Mech. 1953, 20, 444–445.spa
dcterms.bibliographicCitationBleich, H. Die Spannungsverteilung in den Gurtungen gekrümmter Stäbe mit T- und I-formigen Querschnitt. Der. Stahlbau, Beil. Zur Z. Die Bautech. 1933, 6, 3–6.spa
dcterms.bibliographicCitationAnderson, C.G. Flexural Stresses in Curved Beams of I- and Box Sections. Proc. Inst. Mech. Eng. 1950, 163, 295–306.spa
dcterms.bibliographicCitationCook, R.D. Circumferential Stresses in Curved Beams. J. Appl. Mech. 1992, 59, 224–225.spa
dcterms.bibliographicCitationYoung, W.C.; Cook, R.D. Radial Stress Formula for Curved Beams. J. Vib. Acoust. 1989, 111, 491–492.spa
dcterms.bibliographicCitationWang, T.S. Shear Stresses in Curved Beams. Mach. Des. 1967, 39, 175–178spa
dcterms.bibliographicCitationBirger, I.A.; Panovko, J.G. Strength-Stability-Vibrations; Machinery Publishing House: Moscow, Russia, 1968.spa
dcterms.bibliographicCitationOden, J.; Ripperger, E. Mechanics of Elastic Structures; McGraw-Hill: New York, NY, USA, 1981; pp. 101–107.spa
dcterms.bibliographicCitationLiu, H. Advanced Strength of Materials; Advance Education Publishing House: Beijing, China, 1985. (In Chinese)spa
dcterms.bibliographicCitationYu, A.; Nie, G. Explicit solutions for shearing and radial stresses in curved beams. Mech. Res. Commun. 2005, 32, 323–331.spa
dcterms.bibliographicCitationIandiorio, C.; Salvini, P. An Engineering Theory of Thick Curved Beams Loaded In-Plane and Out-of-Plane: 3D Stress Analysis. Eur. J. Mech./A Solids 2022, 92, 104484.spa
dcterms.bibliographicCitationWang, Y.P.; Lee, C.L.; Huang, S.C. Inelastic Stress Analysis of Curved Beams with Bending and Shear Coupling. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering, CSEE’16, Prague, Czech Republic, 30–31 March 2016.spa
dcterms.bibliographicCitationNahvi, H. Pure Bending and Tangential Stresses in Curved Beams of Trapezoidal and Circular Sections. J. Mech. Behav. Mater. 2007, 18, 123–132.spa
dcterms.bibliographicCitationSayyad, A.S.; Ghugal, Y.M. Bending, Buckling and Free Vibration of Laminated Composite and Sandwich Beams: A Critical Review of Literature. Compos. Struct. 2017, 171, 486–504.spa
dcterms.bibliographicCitationHajianmaleki, M.; Qatu, M.S. Vibrations of Straight and Curved Composite Beams: A Review. Compos. Struct. 2013, 100, 218–232.spa
dcterms.bibliographicCitationLi, W.; Ma, H.; Gao, W. Geometrically Exact Beam Element with Rational Shear Stress Distribution for Nonlinear Analysis of FG Curved Beams. Thin-Walled Struct. 2021, 164, 107823.spa
dcterms.bibliographicCitationFerradi, M.K.; Cespedes, X. A Curved Beam Model with the Asymptotic Expansion Method. Eng. Struct. 2021, 241, 112494.spa
dcterms.bibliographicCitationGao, Y.; Wang, M.Z.; Zhao, B.S. The Refined Theory of Rectangular Curved Beams. Acta Mech. 2006, 189, 141–150.spa
dcterms.bibliographicCitationThurnherr, C.; Groh, R.M.J.; Ermanni, P.; Weaver, P.M. Higher-Order Beam Model for Stress Predictions in Curved Beams Made from Anisotropic Materials. Inter. J. Solids Struct. 2016, 97–98, 16–28.spa
dcterms.bibliographicCitationGhuku, S.; Saha, K. A review on stress and deformation analysis of curved beams under large deflection. Int. J. Eng. Technol. 2017, 11, 13–39.spa
dcterms.bibliographicCitationCheung, K.; Sorensen, H. Effect of loads on radial stress in curved beams. Soc. Wood Sci. Technol. 1983, 15, 263–275.spa
dcterms.bibliographicCitationHassan, I. Experimental and analytical study of bending stresses and deflections in curved beam made of laminated composite material. AL-Khwarizmi Eng. J. 2014, 10, 21–32.spa
dcterms.bibliographicCitationPrasad, S.; Subramanian, R.; Krishna, S.; Prashanth, S. Experimental stress analysis of curved beams using strain gauges. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2016, V, 1–6.spa
dcterms.bibliographicCitationAhuett-Garza, H.; Chaides, O.; Garcia, P.N.; Urbina, P. Studies about the use of semicircular beams as hinges in large deflection planar compliant mechanisms. Precis. Eng. 2014, 38, 711–727.spa
dcterms.bibliographicCitationYanze, L.; Ke, Z.; Huaitao, S.; Songhua, L.; Xiaochen, Z. Theoretical and Experimental Analysis of Thin-Walled Curved Rectangular Box Beam under In-Plane Bending. Scanning 2021, 2021, 8867142.spa
dcterms.bibliographicCitationPai, P.F.; Anderson, T.J.; Wheater, E.A. Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams. Int. J. Solids Struct. 2000, 37, 2951–2980.spa
dcterms.bibliographicCitationAşık, M.Z.; Tezcan, S. A mathematical model for the behavior of laminated glass beams. Comput. Struct. 2005, 83, 1742–1753.spa
dcterms.bibliographicCitationAngel, G.; Haritos, G.; Chrysanthou, A.; Voloshin, V. Chord line force versus displacement for thin shallow arc pre-curved bimetallic strip. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 116–124spa
dcterms.bibliographicCitationBoresi, A.P.; Schmidt, R.J. Advanced Mechanics of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003spa
dcterms.bibliographicCitationFazlali, M.R.; Arghavani, J.; Eskandari, M. An Analytical Study on the Elastic-Plastic Pure Bending of a Linear Kinematic Hardening Curved Beam. Int. J. Mech. Sci. 2018, 144, 274–282.spa
dcterms.bibliographicCitationSeely, F.B.; Smith, J.O. Advanced Mechanics of Materials; John Wiley & Sons, Inc.: New York, NY, USA, 1952.spa
dcterms.bibliographicCitationCook, R.D.; Young, W.C. Advanced Mechanics of Materials; Macmillan: New York, NY, USA, 1985.spa
dcterms.bibliographicCitationTsao, C.H. Radial Stresses for Curved Beams. J. Vib. Acoust. 1986, 108, 107–108.spa
dcterms.bibliographicCitationOrtiz Berrocal, L. Resistencia de Materiales; McGraw-Hill: Madrid, Spain, 1990.spa
dcterms.bibliographicCitationAnsys User’s Manual: Theory Reference; 2023R1; The University of Texas Houston: Houston, TX, USA, 2023.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doihttps://doi.org/10.3390/ma17235982
dc.subject.keywordsCurved beamsspa
dc.subject.keywordsStraight beamsspa
dc.subject.keywordsShear stressspa
dc.subject.keywordsMechanics of materialsspa
dc.subject.keywordsTheory of elasticityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Mecánicaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.