Mostrar el registro sencillo del ítem
Data augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentation
dc.contributor.author | Sanchez, Sergio | |
dc.contributor.author | Vallez, Noelia | |
dc.contributor.author | Bueno, Gloria | |
dc.contributor.author | Marrugo, Andres G | |
dc.date.accessioned | 2024-11-29T19:18:30Z | |
dc.date.available | 2024-11-29T19:18:30Z | |
dc.date.issued | 2024-11-12 | |
dc.date.submitted | 2024-11-29 | |
dc.identifier.citation | Sanchez S, Vallez N, Bueno G, Marrugo AG (2024) Data augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentation. PLoS ONE 19(11): e0311849. https://doi.org/10.1371/journal.pone.0311849 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12773 | |
dc.description.abstract | Image segmentation of the corneal endothelium with deep convolutional neural networks (CNN) is challenging due to the scarcity of expert-annotated data. This work proposes a data augmentation technique via warping to enhance the performance of semi-supervised training of CNNs for accurate segmentation. We use a unique augmentation process for images and masks involving keypoint extraction, Delaunay triangulation, local affine transformations, and mask refinement. This approach accurately captures the natural variability of the corneal endothelium, enriching the dataset with realistic and diverse images. The proposed method achieved an increase in the mean intersection over union (mIoU) and Dice coefficient (DC) metrics of 17.2% and 4.8% respectively, for the segmentation task in corneal endothelial images on multiple CNN architectures. Our data augmentation strategy successfully models the natural variability in corneal endothelial images, thereby enhancing the performance and generalization capabilities of semi-supervised CNNs in medical image cell segmentation tasks. | spa |
dc.description.sponsorship | Minciencias | spa |
dc.format.extent | 18 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Plos One | spa |
dc.title | Data augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentation | spa |
dcterms.bibliographicCitation | Fabijańska A. Automatic segmentation of corneal endothelial cells from microscopy images. Biomedical Signal Processing and Control. 2019; 47:145–158. https://doi.org/10.1016/j.bspc.2018.08.018 | spa |
dcterms.bibliographicCitation | Selig B, Vermeer KA, Rieger B, Hillenaar T, Luengo Hendriks CL. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC medical imaging. 2015; 15:1–15. https://doi. org/10.1186/s12880-015-0054-3 PMID: 25928199 | spa |
dcterms.bibliographicCitation | . Okumura N, Yamada S, Nishikawa T, Narimoto K, Okamura K, Izumi A, et al. U-Net Convolutional Neural Network for Segmenting the Corneal Endothelium in a Mouse Model of Fuchs Endothelial Corneal Dystrophy. Cornea. 2022; 41(7):901–907. https://doi.org/10.1097/ICO.0000000000002956 PMID: 34864800 | spa |
dcterms.bibliographicCitation | Fabijańska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network. Artificial Intelligence in Medicine. 2018; 88:1–13. https://doi.org/10.1016/j.artmed.2018.04.004 PMID: 29680687 | spa |
dcterms.bibliographicCitation | Scarpa F, Ruggeri A. Development of a reliable automated algorithm for the morphometric analysis of human corneal endothelium. Cornea. 2016; 35(9):1222–1228. https://doi.org/10.1097/ICO. 0000000000000908 PMID: 27310881 | spa |
dcterms.bibliographicCitation | Prada AM, Quintero F, Mendoza K, Galvis V, Tello A, Romero LA, et al. Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence–Derived Morphometric Parameters From Specular Microscopy Images. Cornea. 2024; 43(9). https://doi.org/10.1097/ICO.0000000000003460 PMID: 38334475 | spa |
dcterms.bibliographicCitation | Patel DV, McGhee CN. Quantitative analysis of in vivo confocal microscopy images: a review. Survey of ophthalmology. 2013; 58(5):466–475. https://doi.org/10.1016/j.survophthal.2012.12.003 PMID: 23453401 | spa |
dcterms.bibliographicCitation | Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, et al. In vivo corneal elastography: A topical review of challenges and opportunities. Computational and Structural Biotechnology Journal. 2023;. https://doi. org/10.1016/j.csbj.2023.04.009 PMID: 37181662 | spa |
dcterms.bibliographicCitation | Shen Z, Fu H, Shen J, Shao L. Modeling and Enhancing Low-Quality Retinal Fundus Images. IEEE Transactions on Medical Imaging. 2020;PP:1–1. https://doi.org/10.1109/TMI.2020.3043495 | spa |
dcterms.bibliographicCitation | Soh YQ, Peh GS, Naso SL, Kocaba V, Mehta JS. Automated clinical assessment of corneal guttae in fuchs endothelial corneal dystrophy. American Journal of Ophthalmology. 2021; 221:260–272. https:// doi.org/10.1016/j.ajo.2020.07.029 PMID: 32730910 | spa |
dcterms.bibliographicCitation | Aquino NR, Gutoski M, Hattori LT, Lopes HS. The effect of data augmentation on the performance of convolutional neural networks. Braz Soc Comput Intell. 2017; | spa |
dcterms.bibliographicCitation | Ginsburger K. Style Augmentation improves Medical Image Segmentation; 2022. https://doi.org/10. 1111/1468-4446.12970 PMID: 35855502 | spa |
dcterms.bibliographicCitation | Vallez N, Bueno G, Deniz O, Blanco S. Diffeomorphic transforms for data augmentation of highly variable shape and texture objects. Computer Methods and Programs in Biomedicine. 2022; 219:106775. https://doi.org/10.1016/j.cmpb.2022.106775 PMID: 35397412 | spa |
dcterms.bibliographicCitation | . Araslanov N, Roth S. Self-supervised Augmentation Consistency for Adapting Semantic Segmentation; 2021. | spa |
dcterms.bibliographicCitation | Sami AS, Rahim MSM. Trainable watershed-based model for cornea endothelial cell segmentation. Journal of Intelligent Systems. 2022; 31(1):370–392. https://doi.org/10.1515/jisys-2021-0191 | spa |
dcterms.bibliographicCitation | Scarpa F, Ruggeri A. Segmentation of corneal endothelial cells contour by means of a genetic algorithm. In: Ophthalmic Medical Image Analysis International Workshop. vol. 2. University of Iowa; 2015. p. 25–32. | spa |
dcterms.bibliographicCitation | Canavesi C, Cogliati A, Hindman HB. Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells. Journal of Biomedical Optics. 2020; 25(9):092902–092902. https://doi.org/10.1117/1.JBO.25.9.092902 PMID: 32770867 | spa |
dcterms.bibliographicCitation | Al-Waisy AS, Alruban A, Al-Fahdawi S, Qahwaji R, Ponirakis G, Malik RA, et al. CellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cells. Mathematics. 2022; 10(3). https://doi.org/10.3390/math10030320 | spa |
dcterms.bibliographicCitation | Sierra JS, Castro JDP, Meza J, Rueda D, Berrospi RD, Tello A, et al. Deep learning for robust segmentation of corneal endothelium images in the presence of cornea guttata. Proc SPIE. 2021; 11804:118041F | spa |
dcterms.bibliographicCitation | Alomar K, Aysel HI, Cai X. Data Augmentation in Classification and Segmentation: A Survey and New Strategies. Journal of Imaging. 2023; 9(2). https://doi.org/10.3390/jimaging9020046 PMID: 36826965 | spa |
dcterms.bibliographicCitation | Ren W, Tang Y, Sun Q, Zhao C, Han QL. Visual Semantic Segmentation Based on Few/Zero-Shot Learning: An Overview; 2022. | spa |
dcterms.bibliographicCitation | dos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, et al. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express. 2019; 10(2):622–641. https://doi.org/10.1364/BOE.10.000622 PMID: 30800504 | spa |
dcterms.bibliographicCitation | Balestriero R, Bottou L, LeCun Y. The Effects of Regularization and Data Augmentation are Class Dependent; 2022. | spa |
dcterms.bibliographicCitation | Wang Y, Huang G, Song S, Pan X, Xia Y, Wu C. Regularizing Deep Networks with Semantic Data Augmentation; 2021. | spa |
dcterms.bibliographicCitation | Sanford TH, Zhang L, Harmon SA, Sackett J, Yang D, Roth H, et al. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model. American Journal of Roentgenology. 2020; 215(6):1403–1410. https://doi.org/10.2214/AJR.19.22347 PMID: 33052737 | spa |
dcterms.bibliographicCitation | Deari S, O¨ ksu¨z İ, Ulukaya S. Importance of data augmentation and transfer learning on retinal vessel segmentation. In: 2021 29th Telecommunications Forum (TELFOR). IEEE; 2021. p. 1–4 | spa |
dcterms.bibliographicCitation | Zhao A, Balakrishnan G, Durand F, Guttag JV, Dalca AV. Data augmentation using learned transformations for one-shot medical image segmentation; 2019. | spa |
dcterms.bibliographicCitation | Liu W, Lu Q, Zhuo Z, Liu Y, Ye C. One-Shot Segmentation of Novel White Matter Tracts via Extensive Data Augmentation; 2023. | spa |
dcterms.bibliographicCitation | Jiao R, Zhang Y, Ding L, Cai R, Zhang J. Learning with Limited Annotations: A Survey on Deep SemiSupervised Learning for Medical Image Segmentation; 2022 | spa |
dcterms.bibliographicCitation | Wu Y, Ge Z, Zhang D, Xu M, Zhang L, Xia Y, et al. Mutual Consistency Learning for Semi-supervised Medical Image Segmentation; 2022 | spa |
dcterms.bibliographicCitation | Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805. 2018;. | spa |
dcterms.bibliographicCitation | Pathak D, Kra¨henbu¨hl P, Donahue J, Darrell T, Efros AA. Context Encoders: Feature Learning by Inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2536–2544. | spa |
dcterms.bibliographicCitation | Balestriero R, LeCun Y. Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods; 2022 | spa |
dcterms.bibliographicCitation | Grill JB, Strub F, Altche´ F, Tallec C, Richemond PH, Buchatskaya E, et al. Bootstrap your own latent: A new approach to self-supervised Learning; 2020. | spa |
dcterms.bibliographicCitation | Ghosh S, Seth A, Mittal D, Singh M, Umesh S. DeLoRes: Decorrelating Latent Spaces for LowResource Audio Representation Learning; 2022 | spa |
dcterms.bibliographicCitation | Nalepa J, Marcinkiewicz M, Kawulok M. Data Augmentation for Brain-Tumor Segmentation: A Review. Frontiers in Computational Neuroscience. 2019; 13. https://doi.org/10.3389/fncom.2019.00083 PMID: 31920608 | spa |
dcterms.bibliographicCitation | Taylor L, Nitschke G. Improving Deep Learning using Generic Data Augmentation; 2017. | spa |
dcterms.bibliographicCitation | Nanni L, Paci M, Brahnam S, Lumini A. Comparison of Different Image Data Augmentation Approaches. Journal of Imaging. 2021; 7:254. https://doi.org/10.3390/jimaging7120254 PMID: 34940721 | spa |
dcterms.bibliographicCitation | Moreno-Barea FJ, Strazzera F, Jerez JM, Urda D, Franco L. Forward Noise Adjustment Scheme for Data Augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI); 2018. p. 728–734 | spa |
dcterms.bibliographicCitation | Liu S, Tian G, Xu Y. A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter. Neurocomputing. 2019; 338:191–206. https://doi.org/10.1016/j.neucom. 2019.01.090 | spa |
dcterms.bibliographicCitation | Skandarani Y, Painchaud N, Jodoin PM, Lalande A. On the effectiveness of GAN generated cardiac MRIs for segmentation; 2020. PMID: 32746116 | spa |
dcterms.bibliographicCitation | Bissoto A, Valle E, Avila S. GAN-Based Data Augmentation and Anonymization for Skin-Lesion Analysis: A Critical Review; 2021. | spa |
dcterms.bibliographicCitation | Mumuni A, Mumuni F. Data augmentation: A comprehensive survey of modern approaches. Array. 2022; 16:100258. https://doi.org/10.1016/j.array.2022.100258 | spa |
dcterms.bibliographicCitation | Sierra JS, Pineda J, Viteri E, Rueda D, Tibaduiza B, Berrospi RD, et al. Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks. Proc SPIE. 2020; p. 115110H. | spa |
dcterms.bibliographicCitation | Kugelman J, Alonso-Caneiro D, Read SA, Collins MJ. A review of generative adversarial network applications in optical coherence tomography image analysis. Journal of Optometry. 2022; 15:S1–S11. https://doi.org/10.1016/j.optom.2022.09.004 PMID: 36241526 | spa |
dcterms.bibliographicCitation | Sierra JS, Pineda J, Rueda D, Tello A, Prada AM, Galvis V, et al. Corneal endothelium assessment in specular microscopy images with Fuchs; dystrophy via deep regression of signed distance maps. Biomed Opt Express. 2023; 14(1):335–351. https://doi.org/10.1364/BOE.477495 PMID: 36698671 | spa |
dcterms.bibliographicCitation | Vigueras-Guille´n JP, van Rooij J, van Dooren BTH, Lemij HG, Islamaj E, van Vliet LJ, et al. DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae; 2022. https://doi.org/10.1038/s41598-022-18180-1 PMID: 35982194 | spa |
dcterms.bibliographicCitation | Kolluru C, Benetz BA, Joseph N, Menegay HJ, Lass JH, Wilson D. Machine learning for segmenting cells in corneal endothelium images. In: Medical Imaging 2019: Computer-Aided Diagnosis. vol. 10950. SPIE; 2019. p. 1126–1135. | spa |
dcterms.bibliographicCitation | Shilpashree PS, Suresh KV, Sudhir RR, Srinivas SP. Automated Image Segmentation of the Corneal Endothelium in Patients With Fuchs Dystrophy. Translational Vision Science & Technology. 2021; 10 (13):27–27. https://doi.org/10.1167/tvst.10.13.27 PMID: 34807254 | spa |
dcterms.bibliographicCitation | Vigueras-Guille´n JP, Lasenby J, Seeliger F. Rotaflip: A New CNN Layer for Regularization and Rotational Invariance in Medical Images; 2021. | spa |
dcterms.bibliographicCitation | Vigueras-Guille´n J, Sari B, Goes S, Lemij H, Rooij J, Vermeer K, et al. Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation. BMC Biomedical Engineering. 2019; 1. https://doi.org/10.1186/s42490-019-0003-2 PMID: 32903308 | spa |
dcterms.bibliographicCitation | Wu J, Shen B, Zhang H, Wang J, Pan Q, Huang J, et al. Semi-supervised Learning for Nerve Segmentation in Corneal Confocal Microscope Photography. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part IV. Berlin, Heidelberg: Springer-Verlag; 2022. p. 47–57. | spa |
dcterms.bibliographicCitation | Sanchez S, Mendoza K, Quintero F, Prada AM, Tello A, Galvis V, et al. Deep neural networks for evaluation of specular microscopy images of the corneal endothelium with Fuchs’ dystrophy. In: Pattern Recognition and Tracking XXXIV. vol. 12527. SPIE; 2023. p. 183–191. | spa |
dcterms.bibliographicCitation | Kucharski A, Fabijańska A. Corneal endothelial image segmentation training data generation using GANs. Do experts need to annotate? Biomedical Signal Processing and Control. 2023; 85:104985. https://doi.org/10.1016/j.bspc.2023.104985 | spa |
dcterms.bibliographicCitation | Saxena D, Cao J. Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions; 2023 | spa |
dcterms.bibliographicCitation | . Qu JH, Qin XR, Peng RM, Xiao GG, Cheng J, Gu SF, et al. A Fully Automated Segmentation and Morphometric Parameter Estimation System for Assessing Corneal Endothelial Cell Images. American Journal of Ophthalmology. 2022; 239:142–153. https://doi.org/10.1016/j.ajo.2022.02.026 PMID: 35288075 | spa |
dcterms.bibliographicCitation | Zbontar J, Jing L, Misra I, LeCun Y, Deny S. Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning. PMLR; 2021. p. 12310–12320. | spa |
dcterms.bibliographicCitation | He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition; 2015. | spa |
dcterms.bibliographicCitation | . Lee Y, Yim B, Kim H, Park E, Cui X, Woo T, et al. Wide-Residual-Inception Networks for Real-time Object Detection; 2017 | spa |
dcterms.bibliographicCitation | Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks; 2018 | spa |
dcterms.bibliographicCitation | Chen X, Hsieh CJ, Gong B. When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations; 2022. | spa |
dcterms.bibliographicCitation | Shafiq M, Gu Z. Deep Residual Learning for Image Recognition: A Survey. Applied Sciences. 2022; 12 (18). https://doi.org/10.3390/app12188972 | spa |
dcterms.bibliographicCitation | Chen Y, Zheng H, Ma Y, Yan Z. Image stitching based on angle-consistent warping. Pattern Recognition. 2021; 117:107993. https://doi.org/10.1016/j.patcog.2021.107993 | spa |
dcterms.bibliographicCitation | Kulwa F, Li C, Grzegorzek M, Rahaman MM, Shirahama K, Kosov S. Segmentation of Weakly Visible Environmental Microorganism Images Using Pair-wise Deep Learning Features; 2022 | spa |
dcterms.bibliographicCitation | . Huang J, Li H, Wan X, Li G. Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023. p. 21384–21393 | spa |
dcterms.bibliographicCitation | . Kornilov A, Safonov I, Yakimchuk I. A Review of Watershed Implementations for Segmentation of Volumetric Images. Journal of Imaging. 2022; 8(5). https://doi.org/10.3390/jimaging8050127 PMID: 35621890 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1371/journal.pone.0311849 | |
dc.subject.keywords | Data augmentation | spa |
dc.subject.keywords | Warping transforms | spa |
dc.subject.keywords | Corneal endothelium | spa |
dc.subject.keywords | Semi-supervised segmentation | spa |
dc.subject.keywords | Deep convolutional neural networks (CNNs) | spa |
dc.subject.keywords | Image segmentation | spa |
dc.subject.keywords | Medical imaging | spa |
dc.subject.keywords | Keypoint extraction | spa |
dc.subject.keywords | Delaunay triangulation | spa |
dc.subject.keywords | Affine transformations | spa |
dc.subject.keywords | Mask refinement Mean intersection over union (mIoU) | spa |
dc.subject.keywords | Dice coefficient (DC) | spa |
dc.subject.keywords | Natural variability | spa |
dc.subject.keywords | Medical image cell segmentation | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.