Mostrar el registro sencillo del ítem

dc.contributor.authorSanchez, Sergio
dc.contributor.authorVallez, Noelia
dc.contributor.authorBueno, Gloria
dc.contributor.authorMarrugo, Andres G
dc.date.accessioned2024-11-29T19:18:30Z
dc.date.available2024-11-29T19:18:30Z
dc.date.issued2024-11-12
dc.date.submitted2024-11-29
dc.identifier.citationSanchez S, Vallez N, Bueno G, Marrugo AG (2024) Data augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentation. PLoS ONE 19(11): e0311849. https://doi.org/10.1371/journal.pone.0311849spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12773
dc.description.abstractImage segmentation of the corneal endothelium with deep convolutional neural networks (CNN) is challenging due to the scarcity of expert-annotated data. This work proposes a data augmentation technique via warping to enhance the performance of semi-supervised training of CNNs for accurate segmentation. We use a unique augmentation process for images and masks involving keypoint extraction, Delaunay triangulation, local affine transformations, and mask refinement. This approach accurately captures the natural variability of the corneal endothelium, enriching the dataset with realistic and diverse images. The proposed method achieved an increase in the mean intersection over union (mIoU) and Dice coefficient (DC) metrics of 17.2% and 4.8% respectively, for the segmentation task in corneal endothelial images on multiple CNN architectures. Our data augmentation strategy successfully models the natural variability in corneal endothelial images, thereby enhancing the performance and generalization capabilities of semi-supervised CNNs in medical image cell segmentation tasks.spa
dc.description.sponsorshipMincienciasspa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePlos Onespa
dc.titleData augmentation via warping transforms for modeling natural variability in the corneal endothelium enhances semi-supervised segmentationspa
dcterms.bibliographicCitationFabijańska A. Automatic segmentation of corneal endothelial cells from microscopy images. Biomedical Signal Processing and Control. 2019; 47:145–158. https://doi.org/10.1016/j.bspc.2018.08.018spa
dcterms.bibliographicCitationSelig B, Vermeer KA, Rieger B, Hillenaar T, Luengo Hendriks CL. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC medical imaging. 2015; 15:1–15. https://doi. org/10.1186/s12880-015-0054-3 PMID: 25928199spa
dcterms.bibliographicCitation. Okumura N, Yamada S, Nishikawa T, Narimoto K, Okamura K, Izumi A, et al. U-Net Convolutional Neural Network for Segmenting the Corneal Endothelium in a Mouse Model of Fuchs Endothelial Corneal Dystrophy. Cornea. 2022; 41(7):901–907. https://doi.org/10.1097/ICO.0000000000002956 PMID: 34864800spa
dcterms.bibliographicCitationFabijańska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network. Artificial Intelligence in Medicine. 2018; 88:1–13. https://doi.org/10.1016/j.artmed.2018.04.004 PMID: 29680687spa
dcterms.bibliographicCitationScarpa F, Ruggeri A. Development of a reliable automated algorithm for the morphometric analysis of human corneal endothelium. Cornea. 2016; 35(9):1222–1228. https://doi.org/10.1097/ICO. 0000000000000908 PMID: 27310881spa
dcterms.bibliographicCitationPrada AM, Quintero F, Mendoza K, Galvis V, Tello A, Romero LA, et al. Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence–Derived Morphometric Parameters From Specular Microscopy Images. Cornea. 2024; 43(9). https://doi.org/10.1097/ICO.0000000000003460 PMID: 38334475spa
dcterms.bibliographicCitationPatel DV, McGhee CN. Quantitative analysis of in vivo confocal microscopy images: a review. Survey of ophthalmology. 2013; 58(5):466–475. https://doi.org/10.1016/j.survophthal.2012.12.003 PMID: 23453401spa
dcterms.bibliographicCitationLan G, Twa MD, Song C, Feng J, Huang Y, Xu J, et al. In vivo corneal elastography: A topical review of challenges and opportunities. Computational and Structural Biotechnology Journal. 2023;. https://doi. org/10.1016/j.csbj.2023.04.009 PMID: 37181662spa
dcterms.bibliographicCitationShen Z, Fu H, Shen J, Shao L. Modeling and Enhancing Low-Quality Retinal Fundus Images. IEEE Transactions on Medical Imaging. 2020;PP:1–1. https://doi.org/10.1109/TMI.2020.3043495spa
dcterms.bibliographicCitationSoh YQ, Peh GS, Naso SL, Kocaba V, Mehta JS. Automated clinical assessment of corneal guttae in fuchs endothelial corneal dystrophy. American Journal of Ophthalmology. 2021; 221:260–272. https:// doi.org/10.1016/j.ajo.2020.07.029 PMID: 32730910spa
dcterms.bibliographicCitationAquino NR, Gutoski M, Hattori LT, Lopes HS. The effect of data augmentation on the performance of convolutional neural networks. Braz Soc Comput Intell. 2017;spa
dcterms.bibliographicCitationGinsburger K. Style Augmentation improves Medical Image Segmentation; 2022. https://doi.org/10. 1111/1468-4446.12970 PMID: 35855502spa
dcterms.bibliographicCitationVallez N, Bueno G, Deniz O, Blanco S. Diffeomorphic transforms for data augmentation of highly variable shape and texture objects. Computer Methods and Programs in Biomedicine. 2022; 219:106775. https://doi.org/10.1016/j.cmpb.2022.106775 PMID: 35397412spa
dcterms.bibliographicCitation. Araslanov N, Roth S. Self-supervised Augmentation Consistency for Adapting Semantic Segmentation; 2021.spa
dcterms.bibliographicCitationSami AS, Rahim MSM. Trainable watershed-based model for cornea endothelial cell segmentation. Journal of Intelligent Systems. 2022; 31(1):370–392. https://doi.org/10.1515/jisys-2021-0191spa
dcterms.bibliographicCitationScarpa F, Ruggeri A. Segmentation of corneal endothelial cells contour by means of a genetic algorithm. In: Ophthalmic Medical Image Analysis International Workshop. vol. 2. University of Iowa; 2015. p. 25–32.spa
dcterms.bibliographicCitationCanavesi C, Cogliati A, Hindman HB. Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells. Journal of Biomedical Optics. 2020; 25(9):092902–092902. https://doi.org/10.1117/1.JBO.25.9.092902 PMID: 32770867spa
dcterms.bibliographicCitationAl-Waisy AS, Alruban A, Al-Fahdawi S, Qahwaji R, Ponirakis G, Malik RA, et al. CellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cells. Mathematics. 2022; 10(3). https://doi.org/10.3390/math10030320spa
dcterms.bibliographicCitationSierra JS, Castro JDP, Meza J, Rueda D, Berrospi RD, Tello A, et al. Deep learning for robust segmentation of corneal endothelium images in the presence of cornea guttata. Proc SPIE. 2021; 11804:118041Fspa
dcterms.bibliographicCitationAlomar K, Aysel HI, Cai X. Data Augmentation in Classification and Segmentation: A Survey and New Strategies. Journal of Imaging. 2023; 9(2). https://doi.org/10.3390/jimaging9020046 PMID: 36826965spa
dcterms.bibliographicCitationRen W, Tang Y, Sun Q, Zhao C, Han QL. Visual Semantic Segmentation Based on Few/Zero-Shot Learning: An Overview; 2022.spa
dcterms.bibliographicCitationdos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, et al. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express. 2019; 10(2):622–641. https://doi.org/10.1364/BOE.10.000622 PMID: 30800504spa
dcterms.bibliographicCitationBalestriero R, Bottou L, LeCun Y. The Effects of Regularization and Data Augmentation are Class Dependent; 2022.spa
dcterms.bibliographicCitationWang Y, Huang G, Song S, Pan X, Xia Y, Wu C. Regularizing Deep Networks with Semantic Data Augmentation; 2021.spa
dcterms.bibliographicCitationSanford TH, Zhang L, Harmon SA, Sackett J, Yang D, Roth H, et al. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model. American Journal of Roentgenology. 2020; 215(6):1403–1410. https://doi.org/10.2214/AJR.19.22347 PMID: 33052737spa
dcterms.bibliographicCitationDeari S, O¨ ksu¨z İ, Ulukaya S. Importance of data augmentation and transfer learning on retinal vessel segmentation. In: 2021 29th Telecommunications Forum (TELFOR). IEEE; 2021. p. 1–4spa
dcterms.bibliographicCitationZhao A, Balakrishnan G, Durand F, Guttag JV, Dalca AV. Data augmentation using learned transformations for one-shot medical image segmentation; 2019.spa
dcterms.bibliographicCitationLiu W, Lu Q, Zhuo Z, Liu Y, Ye C. One-Shot Segmentation of Novel White Matter Tracts via Extensive Data Augmentation; 2023.spa
dcterms.bibliographicCitationJiao R, Zhang Y, Ding L, Cai R, Zhang J. Learning with Limited Annotations: A Survey on Deep SemiSupervised Learning for Medical Image Segmentation; 2022spa
dcterms.bibliographicCitationWu Y, Ge Z, Zhang D, Xu M, Zhang L, Xia Y, et al. Mutual Consistency Learning for Semi-supervised Medical Image Segmentation; 2022spa
dcterms.bibliographicCitationDevlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805. 2018;.spa
dcterms.bibliographicCitationPathak D, Kra¨henbu¨hl P, Donahue J, Darrell T, Efros AA. Context Encoders: Feature Learning by Inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2536–2544.spa
dcterms.bibliographicCitationBalestriero R, LeCun Y. Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods; 2022spa
dcterms.bibliographicCitationGrill JB, Strub F, Altche´ F, Tallec C, Richemond PH, Buchatskaya E, et al. Bootstrap your own latent: A new approach to self-supervised Learning; 2020.spa
dcterms.bibliographicCitationGhosh S, Seth A, Mittal D, Singh M, Umesh S. DeLoRes: Decorrelating Latent Spaces for LowResource Audio Representation Learning; 2022spa
dcterms.bibliographicCitationNalepa J, Marcinkiewicz M, Kawulok M. Data Augmentation for Brain-Tumor Segmentation: A Review. Frontiers in Computational Neuroscience. 2019; 13. https://doi.org/10.3389/fncom.2019.00083 PMID: 31920608spa
dcterms.bibliographicCitationTaylor L, Nitschke G. Improving Deep Learning using Generic Data Augmentation; 2017.spa
dcterms.bibliographicCitationNanni L, Paci M, Brahnam S, Lumini A. Comparison of Different Image Data Augmentation Approaches. Journal of Imaging. 2021; 7:254. https://doi.org/10.3390/jimaging7120254 PMID: 34940721spa
dcterms.bibliographicCitationMoreno-Barea FJ, Strazzera F, Jerez JM, Urda D, Franco L. Forward Noise Adjustment Scheme for Data Augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI); 2018. p. 728–734spa
dcterms.bibliographicCitationLiu S, Tian G, Xu Y. A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter. Neurocomputing. 2019; 338:191–206. https://doi.org/10.1016/j.neucom. 2019.01.090spa
dcterms.bibliographicCitationSkandarani Y, Painchaud N, Jodoin PM, Lalande A. On the effectiveness of GAN generated cardiac MRIs for segmentation; 2020. PMID: 32746116spa
dcterms.bibliographicCitationBissoto A, Valle E, Avila S. GAN-Based Data Augmentation and Anonymization for Skin-Lesion Analysis: A Critical Review; 2021.spa
dcterms.bibliographicCitationMumuni A, Mumuni F. Data augmentation: A comprehensive survey of modern approaches. Array. 2022; 16:100258. https://doi.org/10.1016/j.array.2022.100258spa
dcterms.bibliographicCitationSierra JS, Pineda J, Viteri E, Rueda D, Tibaduiza B, Berrospi RD, et al. Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks. Proc SPIE. 2020; p. 115110H.spa
dcterms.bibliographicCitationKugelman J, Alonso-Caneiro D, Read SA, Collins MJ. A review of generative adversarial network applications in optical coherence tomography image analysis. Journal of Optometry. 2022; 15:S1–S11. https://doi.org/10.1016/j.optom.2022.09.004 PMID: 36241526spa
dcterms.bibliographicCitationSierra JS, Pineda J, Rueda D, Tello A, Prada AM, Galvis V, et al. Corneal endothelium assessment in specular microscopy images with Fuchs; dystrophy via deep regression of signed distance maps. Biomed Opt Express. 2023; 14(1):335–351. https://doi.org/10.1364/BOE.477495 PMID: 36698671spa
dcterms.bibliographicCitationVigueras-Guille´n JP, van Rooij J, van Dooren BTH, Lemij HG, Islamaj E, van Vliet LJ, et al. DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae; 2022. https://doi.org/10.1038/s41598-022-18180-1 PMID: 35982194spa
dcterms.bibliographicCitationKolluru C, Benetz BA, Joseph N, Menegay HJ, Lass JH, Wilson D. Machine learning for segmenting cells in corneal endothelium images. In: Medical Imaging 2019: Computer-Aided Diagnosis. vol. 10950. SPIE; 2019. p. 1126–1135.spa
dcterms.bibliographicCitationShilpashree PS, Suresh KV, Sudhir RR, Srinivas SP. Automated Image Segmentation of the Corneal Endothelium in Patients With Fuchs Dystrophy. Translational Vision Science & Technology. 2021; 10 (13):27–27. https://doi.org/10.1167/tvst.10.13.27 PMID: 34807254spa
dcterms.bibliographicCitationVigueras-Guille´n JP, Lasenby J, Seeliger F. Rotaflip: A New CNN Layer for Regularization and Rotational Invariance in Medical Images; 2021.spa
dcterms.bibliographicCitationVigueras-Guille´n J, Sari B, Goes S, Lemij H, Rooij J, Vermeer K, et al. Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation. BMC Biomedical Engineering. 2019; 1. https://doi.org/10.1186/s42490-019-0003-2 PMID: 32903308spa
dcterms.bibliographicCitationWu J, Shen B, Zhang H, Wang J, Pan Q, Huang J, et al. Semi-supervised Learning for Nerve Segmentation in Corneal Confocal Microscope Photography. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part IV. Berlin, Heidelberg: Springer-Verlag; 2022. p. 47–57.spa
dcterms.bibliographicCitationSanchez S, Mendoza K, Quintero F, Prada AM, Tello A, Galvis V, et al. Deep neural networks for evaluation of specular microscopy images of the corneal endothelium with Fuchs’ dystrophy. In: Pattern Recognition and Tracking XXXIV. vol. 12527. SPIE; 2023. p. 183–191.spa
dcterms.bibliographicCitationKucharski A, Fabijańska A. Corneal endothelial image segmentation training data generation using GANs. Do experts need to annotate? Biomedical Signal Processing and Control. 2023; 85:104985. https://doi.org/10.1016/j.bspc.2023.104985spa
dcterms.bibliographicCitationSaxena D, Cao J. Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions; 2023spa
dcterms.bibliographicCitation. Qu JH, Qin XR, Peng RM, Xiao GG, Cheng J, Gu SF, et al. A Fully Automated Segmentation and Morphometric Parameter Estimation System for Assessing Corneal Endothelial Cell Images. American Journal of Ophthalmology. 2022; 239:142–153. https://doi.org/10.1016/j.ajo.2022.02.026 PMID: 35288075spa
dcterms.bibliographicCitationZbontar J, Jing L, Misra I, LeCun Y, Deny S. Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning. PMLR; 2021. p. 12310–12320.spa
dcterms.bibliographicCitationHe K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition; 2015.spa
dcterms.bibliographicCitation. Lee Y, Yim B, Kim H, Park E, Cui X, Woo T, et al. Wide-Residual-Inception Networks for Real-time Object Detection; 2017spa
dcterms.bibliographicCitationHuang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks; 2018spa
dcterms.bibliographicCitationChen X, Hsieh CJ, Gong B. When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations; 2022.spa
dcterms.bibliographicCitationShafiq M, Gu Z. Deep Residual Learning for Image Recognition: A Survey. Applied Sciences. 2022; 12 (18). https://doi.org/10.3390/app12188972spa
dcterms.bibliographicCitationChen Y, Zheng H, Ma Y, Yan Z. Image stitching based on angle-consistent warping. Pattern Recognition. 2021; 117:107993. https://doi.org/10.1016/j.patcog.2021.107993spa
dcterms.bibliographicCitationKulwa F, Li C, Grzegorzek M, Rahaman MM, Shirahama K, Kosov S. Segmentation of Weakly Visible Environmental Microorganism Images Using Pair-wise Deep Learning Features; 2022spa
dcterms.bibliographicCitation. Huang J, Li H, Wan X, Li G. Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023. p. 21384–21393spa
dcterms.bibliographicCitation. Kornilov A, Safonov I, Yakimchuk I. A Review of Watershed Implementations for Segmentation of Volumetric Images. Journal of Imaging. 2022; 8(5). https://doi.org/10.3390/jimaging8050127 PMID: 35621890spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1371/journal.pone.0311849
dc.subject.keywordsData augmentationspa
dc.subject.keywordsWarping transformsspa
dc.subject.keywordsCorneal endotheliumspa
dc.subject.keywordsSemi-supervised segmentationspa
dc.subject.keywordsDeep convolutional neural networks (CNNs)spa
dc.subject.keywordsImage segmentationspa
dc.subject.keywordsMedical imagingspa
dc.subject.keywordsKeypoint extractionspa
dc.subject.keywordsDelaunay triangulationspa
dc.subject.keywordsAffine transformationsspa
dc.subject.keywordsMask refinement Mean intersection over union (mIoU)spa
dc.subject.keywordsDice coefficient (DC)spa
dc.subject.keywordsNatural variabilityspa
dc.subject.keywordsMedical image cell segmentationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.