Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-Trespalacios, José A.
dc.contributor.authorPolo-Herrera, Daniel E.
dc.contributor.authorFélix-Massa 3, Tamara Y.
dc.contributor.authorHernandez-Rivera, Samuel P.
dc.contributor.authorHernandez-Fernandez, Joaquín
dc.contributor.authorColpas-Castillo, Fredy
dc.contributor.authorCastro-Suarez, John R.
dc.date.accessioned2024-11-12T13:07:23Z
dc.date.available2024-11-12T13:07:23Z
dc.date.issued2024-07-28
dc.date.submitted2024-11-11
dc.identifier.citationMartínez-Trespalacios, J.A.; Polo-Herrera, D.E.; Félix-Massa, T.Y.; Hernández-Rivera, S.P.; Hernández- Fernández, J.; ColpasCastillo, F.; Castro-Suarez, J.R. QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand. Molecules 2024, 29, 3562. https://doi.org/10.3390/molecules29153562spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12759
dc.description.abstractThe development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods were used. First, a spectral search through correlation indices. Second, machine learning algorithms such as principal component analysis (PCA), support vector classification (SVC), decision tree classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. SNV and first derivative were used as preprocessing to improve the spectral information. Precision, recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed limitations in differentiating between brands, particularly for tablets containing AAP as the only API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets according to their brand, even for brands containing only AAP.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceMoleculesspa
dc.titleQCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brandspa
dcterms.bibliographicCitationFDA. Counterfeit Medicine. Available online: http://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/CounterfeitMedicine/spa
dcterms.bibliographicCitationPathak, R.; Gaur, V.; Sankrityayan, H.; Gogtay, J. Tackling Counterfeit Drugs: The Challenges and Possibilities. Pharm. Med. 2023, 37, 281–290. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationWorld Health Organization. Health and Well-Being. Available online: https://www.who.int/data/gho/data/major-themes/health-and-well-being (accessed on 1 March 2023).spa
dcterms.bibliographicCitationEl-Dahiyat, F.; Fahelelbom, K.M.S.; Jairoun, A.A.; Al-Hemyari, S.S. Combatting Substandard and Falsified Medicines: Public Awareness and Identification of Counterfeit Medications. Front. Public Health 2021, 9, 754279. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWorld Health Organization. 1 in 10 Medical Products in Developing Countries is Substandard or Falsified. Available online: https://www.who.int/news/item/28-11-2017-1-in-10-medical-products-in-developing-countries-is-substandard-or-falsified (accessed on 28 November 2017).spa
dcterms.bibliographicCitationZiavrou, K.S.; Noguera, S.; Boumba, V.A. Trends in counterfeit drugs and pharmaceuticals before and during COVID-19 pandemic. Forensic Sci. Int. 2022, 338, 111382. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSrivastava, K. Fake covid vaccines boost the black market for counterfeit medicines. BMJ 2021, 375, 2754. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationCaragea, G.; Avram, O.; Pauna, A.; Costea, A.; Tudosie, M. Acetaminophen, a therapeutic or an extremely toxic remedy—A review. J. Mind Med. Sci. 2022, 9, 102–110. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationVaughan, J.B. Colorimetric Determination of Acetaminophen. J. Pharm. Sci. 1969, 58, 469–470. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationArıkan, C.C.; Kulabaş, N.; Küçükgüzel, İ. Synthesis and standardization of an impurity of acetaminophen, development and validation of liquid chromatographic method. J. Pharm. Biomed. Anal. 2023, 223, 115123. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationIsmail, A.; Gamal, M.; Nasr, M. Optimization of Analytical Method for Simultaneous Determination of Acetaminophen, Caffeine, and Aspirin in Tablet Dosage Form. Pharm. Chem. J. 2023, 56, 12. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGupta, R.N.; Pickersgill, R.; Stefanec, M. Colorimetric determination of acetaminophen. Clin. Biochem. 1983, 16, 220–221. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationSaeed, A.M. Spectrophotometric Determination of Paracetamol in Some Manufactured Tablets in Iraqi markets. Int. J. Pharm. Sci. Rev. Res. 2017, 42, 53–57. [Google Scholar]spa
dcterms.bibliographicCitationMagerusan, L.; Pogacean, F.; Pruneanu, S. Enhanced Acetaminophen Electrochemical Sensing Based on Nitrogen-Doped Graphene. Int. J. Mol. Sci. 2022, 23, 14866. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationVazan, M.; Tashkhourian, J.; Haghighi, B. A novel electrochemical sensor based on MoO3 nanobelt-graphene oxide composite for the simultaneous determination of paracetamol and 4-aminophenol. Diam. Relat. Mater. 2023, 140, 110549. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationWartewig, S.; Neubert, R.H.H. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRoggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationScappaticci, C.; Spera, S.; Biancolillo, A.; Marini, F. Detection and Quantification of Alprazolam Added to Long Drinks by Near Infrared Spectroscopy and Chemometrics. Molecules 2022, 27, 6420. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationShi, G.; Lin, L.; Liu, Y.; Chen, G.; Luo, Y.; Wu, Y.; Li, H. Pharmaceutical application of multivariate modelling techniques: A review on the manufacturing of tablets. RSC Advances 2021, 11, 8323–8345. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZiémons, E.; Mantanus, J.; Lebrun, P.; Rozet, E.; Evrard, B.; Hubert, P. Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy. J. Pharm. Biomed. Anal. 2010, 53, 510–516. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationSzostak, R.; Mazurek, S. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 2001, 127, 144–148. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKhanmohammadi, M.; Garmarudi, A.B.; Moazzen, N.; Ghasemi, K. Qualitative Discrimination Between Paracetamol Tablets Made by Near Infrared Spectroscopy and Chemometrics With Regard to Polymorphism. J. Struct. Chem. 2010, 51, 663–669. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationOloyede, O.O.; Alabi, Z.O.; Akinyemi, A.O.; Oyelere, S.F.; Oluseye, A.B.; Owoyemi, B.C.D. Comparative evaluation of acetaminophen form (I) in commercialized paracetamol brands. Sci. Afr. 2023, 19, e01537. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMokari, A.; Guo, S.; Bocklitz, T. Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning. Molecules 2023, 28, 6886. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRamirez, C.A.M.; Greenop, M.; Ashton, L.; Rehman, I.U. Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev. 2020, 56, 733–763. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTan, C.; Chen, H.; Lin, Z. Brand classification of detergent powder using near-infrared spectroscopy and extreme learning machines. Microchem. J. 2021, 160, 105691. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationZhang, H.; Yang, Q.; Lu, J. Classification of washing powder brands using near-infrared spectroscopy combined with chemometric calibrations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 625–629. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCarrión-Roca, W.; Colón-Mercado, A.M.; Castro-Suarez, J.R.; Caballero-Agosto, E.R.; Colón-González, F.M.; Centeno-Ortiz, J.A.; Ríos-Velázquez, C.; Hernández-Rivera, S.P. Chemical sensing of common microorganisms found in biopharmaceutical industries using MIR laser spectroscopy and multivariate analysis. J. Biophotonics 2024, 17, e202300391. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZorin, I.; Gattinger, P.; Ebner, A.; Brandstetter, M. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. Opt. Express 2022, 30, 5222. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMayerhöfer, T.G.; Popp, J. Beer’s Law—Why Absorbance Depends (Almost) Linearly on Concentration. ChemPhysChem 2019, 20, 511–515. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationFaist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPlata-Enríquez, J.L.; Puche-Mercado, J.F.; Palmer-Velázquez, S.; Carrión-Roca, W.; Colón-González, F.M.; Hernández-Rivera, S.P. Analytical Method Development Using Quantum Laser Cascade Spectroscopy with Diffuse and Attenuated Total Reflectance for Determining Low Concentrations of Active Pharmaceutical Ingredients. Austin J. Anal. Pharm. Chem. 2023, 10, 1157. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationChilds, D.T.D.; Hogg, R.A.; Revin, D.G.; Rehman, I.U.; Cockburn, J.W.; Matcher, S.J. Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 822–839. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMoynihan, H.A.; O’Hare, I.P. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int. J. Pharm. 2002, 247, 179–185. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationAmado, A.M.; Azevedo, C.; Ribeiro-Claro, P.J.A. Conformational and vibrational reassessment of solid paracetamol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 183, 431–438. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZapata, F.; López-Fernández, A.; Ortega-Ojeda, F.; Quintanilla, G.; García-Ruiz, C.; Montalvo, G. Introducing ATR-FTIR Spectroscopy through Analysis of Acetaminophen Drugs: Practical Lessons for Interdisciplinary and Progressive Learning for Undergraduate Students. J. Chem. Educ. 2021, 98, 2675–2686. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMatkovic, S.R.; Valle, G.M.; Galle, M.; Briand, L.E. Desarrollo y validación del análisis cuantitativo de Ibuprofeno en comprimidos por espectroscopía infrarroja. Acta Farm. Bonaer. 2004, 23, 527–532. [Google Scholar]spa
dcterms.bibliographicCitationGalán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernández-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAbdalla, M.A. Determination of Caffeine, the Active Ingredient in Different Coffee Drinks and its Characterization by FTIR/ATR and TGA/DTA. Int. J. Eng. Appl. Sci. 2015, 2, 257765. [Google Scholar]spa
dcterms.bibliographicCitationBakalska, R.; Ivanova, B.; Kolev, T. Solid-state IR-LD spectroscopy of codeine and N-norcodeine derivatives. Open Chem. 2006, 4, 533–542. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationArjunan, V.; Santhanam, R.; Marchewka, M.K.; Mohan, S. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol—An analgesic drug. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 315–330. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationDeepak, S.N.; Hari, B.N.V. Optimization, Development and evaluation of Microemulsion for the release of combination of Guaifenesin and Phenylephrine. J. Appl. Pharm. Sci. 2013, 3, 48–56. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationLee, S.; Lee, H.; Chung, H. New discrimination method combining hit quality index based spectral matching and voting. Anal. Chim. Acta 2013, 758, 58–65. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationASTM E2310-04; Standard Guide for Use of Spectral Searching by Curve Matching Algorithms with Data Recorded Using Mid-Infrared Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]spa
dcterms.bibliographicCitationBeattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 000370282098784. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMijwil, M.M.; Aljanabi, M. A Comparative Analysis of Machine Learning Algorithms for Classification of Diabetes Utilizing Confusion Matrix Analysis. Baghdad Sci. J. 2023, 21, 1712–1728. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationAnaney-Obiri, D.; Sarku, E. Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning Algorithms. Int. J. Comput. Appl. 2020, 176, 17–21. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationSitorus, A.; Lapcharoensuk, R. A rapid method to predict type and adulteration of coconut milk by near-infrared spectroscopy combined with machine learning and chemometric tools. Microchem. J. 2023, 195, 109461. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTachie, C.Y.E.; Obiri-Ananey, D.; Alfaro-Cordoba, M.; Tawiah, N.A.; Aryee, A.N.A. Classification of oils and margarines by FTIR spectroscopy in tandem with machine learning. Food Chem. 2024, 431, 137077. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPedregosa, F.; Buitinck, L.; Louppe, G.; Grisel, O.; Varoquaux, G.; Mueller, A. Scikit-learn. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTrespalacios, J.A.M.; Suarez, J.R.C.; Fernández, J.H. Application of Fourier Transform Spectroscopy and Machine Learning to Determine Green Ethylene Content in Samples of Ethylene-Propylene Impact Copolymers. J. Southwest Jiaotong Univ. 2023, 58. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationCarrera, B.; Piñol, V.L.; Mata, J.B.; Kim, K. A machine learning based classification models for plastic recycling using different wavelength range spectrums. J. Clean. Prod. 2022, 374, 133883. [Google Scholar] [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/molecules291 53562
dc.subject.keywordsVibrational spectroscopyspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsCounterfeit drugsspa
dc.subject.keywordsChemometricsspa
dc.subject.keywordsMid-infraredspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.