Mostrar el registro sencillo del ítem
QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand
dc.contributor.author | Martínez-Trespalacios, José A. | |
dc.contributor.author | Polo-Herrera, Daniel E. | |
dc.contributor.author | Félix-Massa 3, Tamara Y. | |
dc.contributor.author | Hernandez-Rivera, Samuel P. | |
dc.contributor.author | Hernandez-Fernandez, Joaquín | |
dc.contributor.author | Colpas-Castillo, Fredy | |
dc.contributor.author | Castro-Suarez, John R. | |
dc.date.accessioned | 2024-11-12T13:07:23Z | |
dc.date.available | 2024-11-12T13:07:23Z | |
dc.date.issued | 2024-07-28 | |
dc.date.submitted | 2024-11-11 | |
dc.identifier.citation | Martínez-Trespalacios, J.A.; Polo-Herrera, D.E.; Félix-Massa, T.Y.; Hernández-Rivera, S.P.; Hernández- Fernández, J.; ColpasCastillo, F.; Castro-Suarez, J.R. QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand. Molecules 2024, 29, 3562. https://doi.org/10.3390/molecules29153562 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12759 | |
dc.description.abstract | The development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods were used. First, a spectral search through correlation indices. Second, machine learning algorithms such as principal component analysis (PCA), support vector classification (SVC), decision tree classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. SNV and first derivative were used as preprocessing to improve the spectral information. Precision, recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed limitations in differentiating between brands, particularly for tablets containing AAP as the only API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets according to their brand, even for brands containing only AAP. | spa |
dc.format.extent | 17 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Molecules | spa |
dc.title | QCL infrared spectroscopy combined with machine learning as a useful tool for classifying acetaminophen tablets by brand | spa |
dcterms.bibliographicCitation | FDA. Counterfeit Medicine. Available online: http://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/CounterfeitMedicine/ | spa |
dcterms.bibliographicCitation | Pathak, R.; Gaur, V.; Sankrityayan, H.; Gogtay, J. Tackling Counterfeit Drugs: The Challenges and Possibilities. Pharm. Med. 2023, 37, 281–290. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | World Health Organization. Health and Well-Being. Available online: https://www.who.int/data/gho/data/major-themes/health-and-well-being (accessed on 1 March 2023). | spa |
dcterms.bibliographicCitation | El-Dahiyat, F.; Fahelelbom, K.M.S.; Jairoun, A.A.; Al-Hemyari, S.S. Combatting Substandard and Falsified Medicines: Public Awareness and Identification of Counterfeit Medications. Front. Public Health 2021, 9, 754279. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | World Health Organization. 1 in 10 Medical Products in Developing Countries is Substandard or Falsified. Available online: https://www.who.int/news/item/28-11-2017-1-in-10-medical-products-in-developing-countries-is-substandard-or-falsified (accessed on 28 November 2017). | spa |
dcterms.bibliographicCitation | Ziavrou, K.S.; Noguera, S.; Boumba, V.A. Trends in counterfeit drugs and pharmaceuticals before and during COVID-19 pandemic. Forensic Sci. Int. 2022, 338, 111382. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Srivastava, K. Fake covid vaccines boost the black market for counterfeit medicines. BMJ 2021, 375, 2754. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Caragea, G.; Avram, O.; Pauna, A.; Costea, A.; Tudosie, M. Acetaminophen, a therapeutic or an extremely toxic remedy—A review. J. Mind Med. Sci. 2022, 9, 102–110. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Vaughan, J.B. Colorimetric Determination of Acetaminophen. J. Pharm. Sci. 1969, 58, 469–470. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Arıkan, C.C.; Kulabaş, N.; Küçükgüzel, İ. Synthesis and standardization of an impurity of acetaminophen, development and validation of liquid chromatographic method. J. Pharm. Biomed. Anal. 2023, 223, 115123. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Ismail, A.; Gamal, M.; Nasr, M. Optimization of Analytical Method for Simultaneous Determination of Acetaminophen, Caffeine, and Aspirin in Tablet Dosage Form. Pharm. Chem. J. 2023, 56, 12. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Gupta, R.N.; Pickersgill, R.; Stefanec, M. Colorimetric determination of acetaminophen. Clin. Biochem. 1983, 16, 220–221. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Saeed, A.M. Spectrophotometric Determination of Paracetamol in Some Manufactured Tablets in Iraqi markets. Int. J. Pharm. Sci. Rev. Res. 2017, 42, 53–57. [Google Scholar] | spa |
dcterms.bibliographicCitation | Magerusan, L.; Pogacean, F.; Pruneanu, S. Enhanced Acetaminophen Electrochemical Sensing Based on Nitrogen-Doped Graphene. Int. J. Mol. Sci. 2022, 23, 14866. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Vazan, M.; Tashkhourian, J.; Haghighi, B. A novel electrochemical sensor based on MoO3 nanobelt-graphene oxide composite for the simultaneous determination of paracetamol and 4-aminophenol. Diam. Relat. Mater. 2023, 140, 110549. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Wartewig, S.; Neubert, R.H.H. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Scappaticci, C.; Spera, S.; Biancolillo, A.; Marini, F. Detection and Quantification of Alprazolam Added to Long Drinks by Near Infrared Spectroscopy and Chemometrics. Molecules 2022, 27, 6420. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Shi, G.; Lin, L.; Liu, Y.; Chen, G.; Luo, Y.; Wu, Y.; Li, H. Pharmaceutical application of multivariate modelling techniques: A review on the manufacturing of tablets. RSC Advances 2021, 11, 8323–8345. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ziémons, E.; Mantanus, J.; Lebrun, P.; Rozet, E.; Evrard, B.; Hubert, P. Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy. J. Pharm. Biomed. Anal. 2010, 53, 510–516. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Szostak, R.; Mazurek, S. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 2001, 127, 144–148. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Khanmohammadi, M.; Garmarudi, A.B.; Moazzen, N.; Ghasemi, K. Qualitative Discrimination Between Paracetamol Tablets Made by Near Infrared Spectroscopy and Chemometrics With Regard to Polymorphism. J. Struct. Chem. 2010, 51, 663–669. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Oloyede, O.O.; Alabi, Z.O.; Akinyemi, A.O.; Oyelere, S.F.; Oluseye, A.B.; Owoyemi, B.C.D. Comparative evaluation of acetaminophen form (I) in commercialized paracetamol brands. Sci. Afr. 2023, 19, e01537. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Mokari, A.; Guo, S.; Bocklitz, T. Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning. Molecules 2023, 28, 6886. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ramirez, C.A.M.; Greenop, M.; Ashton, L.; Rehman, I.U. Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev. 2020, 56, 733–763. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Tan, C.; Chen, H.; Lin, Z. Brand classification of detergent powder using near-infrared spectroscopy and extreme learning machines. Microchem. J. 2021, 160, 105691. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, H.; Yang, Q.; Lu, J. Classification of washing powder brands using near-infrared spectroscopy combined with chemometric calibrations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 625–629. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Carrión-Roca, W.; Colón-Mercado, A.M.; Castro-Suarez, J.R.; Caballero-Agosto, E.R.; Colón-González, F.M.; Centeno-Ortiz, J.A.; Ríos-Velázquez, C.; Hernández-Rivera, S.P. Chemical sensing of common microorganisms found in biopharmaceutical industries using MIR laser spectroscopy and multivariate analysis. J. Biophotonics 2024, 17, e202300391. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Zorin, I.; Gattinger, P.; Ebner, A.; Brandstetter, M. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. Opt. Express 2022, 30, 5222. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Mayerhöfer, T.G.; Popp, J. Beer’s Law—Why Absorbance Depends (Almost) Linearly on Concentration. ChemPhysChem 2019, 20, 511–515. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Plata-Enríquez, J.L.; Puche-Mercado, J.F.; Palmer-Velázquez, S.; Carrión-Roca, W.; Colón-González, F.M.; Hernández-Rivera, S.P. Analytical Method Development Using Quantum Laser Cascade Spectroscopy with Diffuse and Attenuated Total Reflectance for Determining Low Concentrations of Active Pharmaceutical Ingredients. Austin J. Anal. Pharm. Chem. 2023, 10, 1157. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Childs, D.T.D.; Hogg, R.A.; Revin, D.G.; Rehman, I.U.; Cockburn, J.W.; Matcher, S.J. Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 822–839. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Moynihan, H.A.; O’Hare, I.P. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int. J. Pharm. 2002, 247, 179–185. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Amado, A.M.; Azevedo, C.; Ribeiro-Claro, P.J.A. Conformational and vibrational reassessment of solid paracetamol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 183, 431–438. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Zapata, F.; López-Fernández, A.; Ortega-Ojeda, F.; Quintanilla, G.; García-Ruiz, C.; Montalvo, G. Introducing ATR-FTIR Spectroscopy through Analysis of Acetaminophen Drugs: Practical Lessons for Interdisciplinary and Progressive Learning for Undergraduate Students. J. Chem. Educ. 2021, 98, 2675–2686. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Matkovic, S.R.; Valle, G.M.; Galle, M.; Briand, L.E. Desarrollo y validación del análisis cuantitativo de Ibuprofeno en comprimidos por espectroscopía infrarroja. Acta Farm. Bonaer. 2004, 23, 527–532. [Google Scholar] | spa |
dcterms.bibliographicCitation | Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernández-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Abdalla, M.A. Determination of Caffeine, the Active Ingredient in Different Coffee Drinks and its Characterization by FTIR/ATR and TGA/DTA. Int. J. Eng. Appl. Sci. 2015, 2, 257765. [Google Scholar] | spa |
dcterms.bibliographicCitation | Bakalska, R.; Ivanova, B.; Kolev, T. Solid-state IR-LD spectroscopy of codeine and N-norcodeine derivatives. Open Chem. 2006, 4, 533–542. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Arjunan, V.; Santhanam, R.; Marchewka, M.K.; Mohan, S. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol—An analgesic drug. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 315–330. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Deepak, S.N.; Hari, B.N.V. Optimization, Development and evaluation of Microemulsion for the release of combination of Guaifenesin and Phenylephrine. J. Appl. Pharm. Sci. 2013, 3, 48–56. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, S.; Lee, H.; Chung, H. New discrimination method combining hit quality index based spectral matching and voting. Anal. Chim. Acta 2013, 758, 58–65. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | ASTM E2310-04; Standard Guide for Use of Spectral Searching by Curve Matching Algorithms with Data Recorded Using Mid-Infrared Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef] | spa |
dcterms.bibliographicCitation | Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 000370282098784. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Mijwil, M.M.; Aljanabi, M. A Comparative Analysis of Machine Learning Algorithms for Classification of Diabetes Utilizing Confusion Matrix Analysis. Baghdad Sci. J. 2023, 21, 1712–1728. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Ananey-Obiri, D.; Sarku, E. Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning Algorithms. Int. J. Comput. Appl. 2020, 176, 17–21. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Sitorus, A.; Lapcharoensuk, R. A rapid method to predict type and adulteration of coconut milk by near-infrared spectroscopy combined with machine learning and chemometric tools. Microchem. J. 2023, 195, 109461. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Tachie, C.Y.E.; Obiri-Ananey, D.; Alfaro-Cordoba, M.; Tawiah, N.A.; Aryee, A.N.A. Classification of oils and margarines by FTIR spectroscopy in tandem with machine learning. Food Chem. 2024, 431, 137077. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Pedregosa, F.; Buitinck, L.; Louppe, G.; Grisel, O.; Varoquaux, G.; Mueller, A. Scikit-learn. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Trespalacios, J.A.M.; Suarez, J.R.C.; Fernández, J.H. Application of Fourier Transform Spectroscopy and Machine Learning to Determine Green Ethylene Content in Samples of Ethylene-Propylene Impact Copolymers. J. Southwest Jiaotong Univ. 2023, 58. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Carrera, B.; Piñol, V.L.; Mata, J.B.; Kim, K. A machine learning based classification models for plastic recycling using different wavelength range spectrums. J. Clean. Prod. 2022, 374, 133883. [Google Scholar] [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/molecules291 53562 | |
dc.subject.keywords | Vibrational spectroscopy | spa |
dc.subject.keywords | Machine learning | spa |
dc.subject.keywords | Counterfeit drugs | spa |
dc.subject.keywords | Chemometrics | spa |
dc.subject.keywords | Mid-infrared | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.